f(x)是定義在r上的偶函數(shù),當(dāng)x≥0時,f(x)=x2-2x
①求x<0時f(x)的解析式
②若f(a)=-1,求實數(shù)a的值.
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:①設(shè)x<0,則-x>0,代入f(x)=x2-2x求得x<0時的函數(shù)解析式;
②把x=a代入分段函數(shù)中,求解一元二次方程得答案.
解答: 解:①∵y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=x2-2x,
當(dāng)x<0時,-x>0,
f(-x)=(-x)2-2(-x)=x2+2x,
∴f(x)=f(-x)=x2+2x,
∴f(x)=
x2-2x,x≥0
x2+2x,x<0
;
②∵f(x)=
x2-2x,x≥0
x2+2x,x<0

當(dāng)a≥0時,由f(a)=-1,得a2-2a=-1,解得a=1;
當(dāng)a<0時,由f(a)=-1,得a2+2a=-1,解得a=-1.
點評:本題考查了函數(shù)奇偶性的性質(zhì),考查了函數(shù)解析式的求法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m(x+m+3)(x+m+5),g(x)=3x-3,且同時滿足條件:①?x∈R,f(x)<0或g(x)<0; ②?x∈(-∞,-2),f(x)•g(x)<0,則m的取值范圍( 。
A、(-∞,-2)
B、(-4,-3)
C、(-3,0)
D、(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A、B是全集U={1,2,3,4,5,6,7,8,9}的子集,且A∩B={2},(∁UA)∩(∁UB)={1,9},(∁UA)∩B={4,6,8},求集合A、B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

PM2.5是指懸浮在空氣中的空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)GB3095-2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75毫克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).從某自然保護(hù)區(qū)2012年全年每天的PM2.5監(jiān)測值數(shù)據(jù)中隨機(jī)地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如表所示:
PM2.5日均值
(微克/立方米)
[25,35](35,45](45,55](55,65](65,75](75,85]
頻數(shù)311113
(1)從這10天的PM2.5日均值監(jiān)測數(shù)據(jù)中,隨機(jī)抽取3天,求恰有1天空氣質(zhì)量達(dá)到一級的概率;
(2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列;
(3)以這10天的PM2.5日均值來估計一年的空氣質(zhì)量狀況,則一年(按366天算)中平均有多少天的空氣質(zhì)量達(dá)到一級或二級.(精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x2+2y2=4x,求z=x2+y2的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)計算法求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
49×50
的值,寫出求此算法的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABEF是長方形,DA⊥平面ABEF,BC∥AD,G,H分別為DF,CE的中點,且AD=AF=2BC.
(Ⅰ)求證:GH∥平面ABCD;
(Ⅱ)求三棱錐E-BCD與D-BEF的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y|y=x-1,x∈R},B={y|y=x2-1,x∈R},C={x|y=x+1,y≥3},求(A∪C)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求S=12+32+52…+9992的值,畫出程序框圖并寫出程序.

查看答案和解析>>

同步練習(xí)冊答案