在平面直角坐標系xOy中,已知A(0,-1),B(-3,-4)兩點,若點C在∠AOB的平分線上,且|
.
|OC|
=
10
,則點C的坐標是
 
分析:求出
OB
方向上的單位向量
e
,則有點C在∠AOB的平分線上,故存在實數(shù)λ使得
.
OC
=λ(
OA
+
e
),如此可以得到坐標的參數(shù)表達式,再由|
.
|OC|
=
10
,建立方程求出參數(shù)的值,即可得出點C的坐標.
解答:解:由題意
OA
=(0,-1),是一個單位向量,
由于
OB
=(-3,-4),故
OB
方向上的單位向量
e
=(-
3
5
,-
4
5
),
∵點C在∠AOB的平分線上,∴存在實數(shù)λ使得
.
OC
=λ(
OA
+
e
)=λ(-
3
5
,-1-
4
5
)=λ(-
3
5
,-
9
5
),
∵|
.
|OC|
=
10
,
∴λ2×(
9
25
+
81
25
)=10,解得λ=
5
3

代入得得
.
OC
=(-1,-3)
故答案為:(-1,-3)
點評:本題考查向量的坐標運算,向量的求模公式,綜合性較強,解決本題關(guān)鍵是認識到角平分線與向量的關(guān)系,求出
OB
方向上的單位向量,用待定系數(shù)法將向量
.
OC
表示出來.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案