已知Rt△ABC中(如圖1),AB⊥AC,AB=4,∠ACB=30°,AD⊥BC,沿AD折疊,使得折疊后∠BDC=90°,如圖2所示.
(1)求證:AD⊥平面BDC
(2)求三棱錐A-BDC的體積.
考點:直線與平面垂直的判定,棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:(1)由已知條件得AD⊥BD,AD⊥DC,由此能證明AD⊥平面BDC.
(2)由題設(shè)可得:BD=2,DC=6,AD=2
3
,由此能求出三棱錐A-BDC的體積.
解答: (1)證明:∵Rt△ABC中(如圖1),AB⊥AC,AB=4,∠ACB=30°,AD⊥BC,
沿AD折疊,使得折疊后∠BDC=90°,
∴AD⊥BD,AD⊥DC,…(4分)
又BD∩DC=D,
所以,AD⊥平面BDC…(6分)
(2)由題設(shè)可得:BD=2,DC=6,AD=2
3
,…(9分)
∴三棱錐A-BDC的體積為:
V=
1
3
×S△BDC×AD

=
1
3
×
1
2
×2×6×2
3
=4
3
.…(12分)
點評:本題考查直線與平面垂直的證明,考查三棱錐的體積的求法,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0),離心率為
3
2
,長軸長為4,圓O:x2+y2=1(O為原點),直線l:y=kx+m是圓O的一條切線,且直線l與橢圓M交于不同的兩點A、B.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)求△AOB的面積取最大值時直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),A,B是橢圓上的兩點,線段AB的垂直平分線與x軸相交于點P(x0,0),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為
3
2
2

(1)求拋物線C的方程;
(2)已知A,B是拋物線C上的兩點,過A,B兩點分別作拋物線C的切線,兩條切線的交點為M,設(shè)線段AB的中點為N,證明:存在λ∈R,使得
MN
OF

(3)在(2)的條件下,若拋物線C的切線BM與y軸交于點R,直線AB兩點的連線過點F,試求△ABR面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的體積為
64π
3
立方米.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為4千元.設(shè)該容器的總建造費(fèi)用為y千元.
(Ⅰ)將y表示成r的函數(shù)f(r),并求該函數(shù)的定義域;
(Ⅱ)討論函數(shù)f(r)的單調(diào)性,并確定r和l為何值時,該容器的建造費(fèi)用最小,并求出最小建造費(fèi)用.
(參考公式:球的表面積公式S=4πr2,球的體積公式V=
4
3
πr3,圓柱體的側(cè)面積公式S=2πrl,圓柱體的體積公式V=πr2l)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(0,-1)是橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑.求橢圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在橢圓中,稱過焦點且垂直于長軸的直線被橢圓所截得的弦為橢圓的“通徑”.已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,其離心率為
1
2
,通徑長為3.
(1)求橢圓C的方程;
(2)如圖所示,過點F1的直線與橢圓交于A、B兩點,I1、I2分別為△F1BF2、△F1AF2的內(nèi)心,延長BF2與橢圓交于點M,求四邊形F1I2F2I1的面積與△AF2B的面積的比值;
(3)在x軸上是否存在定點P,使得
PM
PB
為定值?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:x2-
y2
2
=1的左、右兩個頂點分別為A、B.曲線M是以A、B兩點為短軸端點,離心率為
2
2
的橢圓.設(shè)點P在第一象限且在曲線C上,直線AP與橢圓M相交于另一點T.
(Ⅰ)設(shè)點P、T的橫坐標(biāo)分別為x1、x2,證明:x1x2=1;
(Ⅱ)設(shè)△TAB與△POB(其中O為坐標(biāo)原點)的面積分別為S1與S2,且
PA
PB
≤9,求S1•S2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax2+bx+c(a,b,c∈R,e=2.718…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(0,f(0))處的切線方程為y=x+1.
(Ⅰ)求b與c的值;
(Ⅱ)當(dāng)a>0時,若方程f(x)=0在(0,+∞)有唯一的實數(shù)解,求a的值;
(Ⅲ)當(dāng)a=2時,證明:函數(shù)f(x)在[0,3]上有且僅有兩個極值點,并求f(x)在[0,3]是的最大值.
(參考數(shù)據(jù):e2≈7.39,e3≈20.09,e4≈54.60)

查看答案和解析>>

同步練習(xí)冊答案