已知橢圓的離心率為,過右焦點(diǎn)且斜率為的直線與相交于兩點(diǎn).若,則(       )
A.1B.C.D.2
B

試題分析:說明,聯(lián)想橢圓的第二定義,把橢圓上的點(diǎn)A,B到焦點(diǎn)的距離轉(zhuǎn)化為它們到準(zhǔn)線的距離,再探究問題的解法.右準(zhǔn)線為,如圖,作,為垂足,準(zhǔn)線軸交點(diǎn)為D,則,,又,記,則,,,∴.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓.

(1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿足,且.
①證明直線軸交點(diǎn)的位置與無關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點(diǎn)的兩條互相垂直的直線,其中交圓、兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若.
(Ⅰ)求此橢圓的方程;
(Ⅱ)點(diǎn)是橢圓的右頂點(diǎn),直線與橢圓交于、兩點(diǎn)(在第一象限內(nèi)),又、是此橢圓上兩點(diǎn),并且滿足,求證:向量共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線與橢圓有公共焦點(diǎn),且橢圓過點(diǎn).
(1)求橢圓方程;
(2)點(diǎn)是橢圓的上下頂點(diǎn),點(diǎn)為右頂點(diǎn),記過點(diǎn)、的圓為⊙,過點(diǎn)作⊙ 的切線,求直線的方程;
(3)過橢圓的上頂點(diǎn)作互相垂直的兩條直線分別交橢圓于另外一點(diǎn),試問直線是否經(jīng)過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓C:過點(diǎn)(0,4),離心率為
(Ⅰ)求C的方程;(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖示:已知拋物線的焦點(diǎn)為,過點(diǎn)作直線交拋物線、兩點(diǎn),經(jīng)過、兩點(diǎn)分別作拋物線的切線、,切線相交于點(diǎn).

(1)當(dāng)點(diǎn)在第二象限,且到準(zhǔn)線距離為時(shí),求;
(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓內(nèi)的一點(diǎn),過點(diǎn)P的弦恰好以P為中點(diǎn),那么這弦所在的直線方程(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線過橢圓的左焦點(diǎn)F,且與橢圓相交于P、Q兩點(diǎn),M為PQ的中點(diǎn),O為原點(diǎn).若△FMO是以O(shè)F為底邊的等腰三角形,則直線l的方程為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線的焦點(diǎn)且傾斜角為的直線與拋物線在第一、四象限分別交于兩點(diǎn),則等于(     )
A.5B.4 C.3D. 2

查看答案和解析>>

同步練習(xí)冊(cè)答案