從6名男生和4名女生中選出3人參加某個競賽,若這3人中必須既有男生又有女生,則不同的選擇法共有
 
種.
考點:計數(shù)原理的應(yīng)用
專題:應(yīng)用題,排列組合
分析:這3人中必須既有男生又有女生的選法有兩種:2男1女和1男2女,分別求出這兩種情況下的選法的數(shù)量,相加即得所求.
解答: 解:這3人中必須既有男生又有女生的選法有兩種:2男1女和1男2女,
∴不同的選法共有:
C
2
6
C
1
4
+
C
1
5
C
2
4
=15×4+6×6=96
種.
故答案為:96
點評:本題主要考查組合及兩個基本原理,組合數(shù)公式的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的首項a1=1,前n項和Sn滿足關(guān)系式:3tSn-(2t+3)Sn-1=3t(其中t>0,n=2,3,4,…)
(Ⅰ)求證:數(shù)列{an}是等比數(shù)列.
(Ⅱ)設(shè)數(shù)列{an}的公比為f(t),作數(shù)列{bn},使b1=1,bn=f
1
bn-1
)(n=2,3,4…),求數(shù)列{bn}的通項公式bn
(Ⅲ)設(shè)Tn=b1b2-b2b3+b3b4 -b4b5+…+b2n-1b2n-b2nb2n+1,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一布袋里放有大小相等的兩個白球和一個黑球,有放回地每次摸取一個球,定義數(shù)列{an}:an=
-1,第n次摸到黑球
1,第n次摸到白球
,記X為數(shù)列{an}的前4項之和S4,則EX=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=4,過C作圓的切線l,過A作l的垂線AD,垂足為D,AD交圓與E,則線段DE的長等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=
3
,b=3,C=30°,則c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x2+3x2
=-x
x+3
,則x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓柱半徑是2,則是一個與圓柱的軸成45°角的平面截圓柱面所得截痕曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
1
2
,
3
2
),
b
=(-
3
2
,
1
2
),
c
=(cosθ,sinθ),則(
a
-
c
)•(
b
-
c
)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
3
x-log2x,若x0是函數(shù)y=f(x)的零點,且0<x1<x0,則有( 。
A、f(x1)>0
B、f(x1)<0
C、f(x1)=0
D、f(x1)>0與f(x1)<0均有可能

查看答案和解析>>

同步練習(xí)冊答案