【題目】中,三內(nèi)角A,B,C的對邊分別為a,b,c.

(1)若,求;

(2)若,且為鈍角,證明: ,并求的取值范圍.

【答案】1,(2

【解析】試題分析:

(1)由題意結(jié)合正弦定理可得,結(jié)合兩角和差正余弦公式可得;

(2)利用題意得到關(guān)于sinA的二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)可得的取值范圍是.

試題解析:

(1)由正弦定理可得,

c,A=45°a=2,

sinC=,

∴C=60°120°,

由正弦定理可得

當(dāng)C=60°,sinB=sin(A+C)=sin45°cos60°+cos45°sin60°=

b=

當(dāng)C=120°,sinB=sin(A+C)=sin45°cos120°+cos45°sin120°=

b=,

(2)由題意得a=btanA,

∴由正弦定理得,則sinB=cosA

B為鈍角,,

BA=;

C=π(A+B)=π(A++A)= 2A>0,

A(0, ),

sinA+sinC=sinA+sin(2A)=sinA+cos2A=sinA+12sin/span>2A=2(sinA)2+,

A(0, ),0<sinA<

∴由二次函數(shù)可知, ,

sinA+sinC的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)個紅包,每個紅包金額為元,已知在每輪游戲中所產(chǎn)生的個紅包金額的頻率分布直方圖如圖所示

1的值,并根據(jù)頻率分布直方圖,估計紅包金額的眾數(shù);

2以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個紅包,其中金額在的紅包個數(shù)為,求的分布列和期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求不等式的解集;

(2)對任意,若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

當(dāng)時,求的極值;

若曲線在點(diǎn)處切線的斜率為3,且對任意都成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,為三棱柱,且平面,四邊形為平行四邊形,

1)若,求證:平面;

2)若,二面角的余弦值為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,貨輪在海上以35n mile/h的速度沿方位角(從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的水平角)為的方向航行.為了確定船位,在B點(diǎn)處觀測到燈塔A的方位角為.半小時后,貨輪到達(dá)C點(diǎn)處,觀測到燈塔A的方位角為.求此時貨輪與燈塔之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對定義在區(qū)間上的函數(shù),如果對任意,都有成立,那么稱函數(shù)在區(qū)間上可被替代,稱為替代區(qū)間.給出以下問題:

在區(qū)間上可被替代;

可被替代的一個替代區(qū)間

在區(qū)間可被替代,則

,,則存在實(shí)數(shù),使得在區(qū)間上被替代; 其中真命題有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實(shí)數(shù)滿足,則稱局部奇函數(shù).

為定義在上的局部奇函數(shù)

方程有兩個不等實(shí)根;

為假命題,為真命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),是函數(shù) 圖象上的任意兩點(diǎn),且角的終邊經(jīng)過點(diǎn),若時,的 最小值為.

(1)求函數(shù)的解析式;

(2)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案