【題目】如圖所示的幾何體中,為三棱柱,且平面,四邊形為平行四邊形,.
(1)若,求證:平面;
(2)若,二面角的余弦值為,求三棱錐的體積.
科目:高中數(shù)學 來源: 題型:
【題目】設不等式組所表示的平面區(qū)域為Dn,記Dn內(nèi)的格點(格點即橫坐標和縱坐標均為整數(shù)的點)的個數(shù)為f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表達式;
(2)設bn=2nf(n),Sn為{bn}的前n項和,求Sn;
(3)記,若對于一切正整數(shù)n,總有Tn≤m成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是棱長為2的正方形,側(cè)面PAD為正三角形,且面PAD⊥面ABCD,E、F分別為棱AB、PC的中點.
(1)求證:EF∥平面PAD;
(2)求三棱錐B-EFC的體積;
(3)求二面角P-EC-D的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地為制定初中七、八、九年級學生校服的生產(chǎn)計劃,有關部門準備對180名初中男生的身高作調(diào)查.
(1)為了達到估計該地初中三個年級男生身高分布的目的,你認為采用怎樣的調(diào)查方案比較合理?
(2)表中的數(shù)據(jù)是使用了某種調(diào)查方法獲得的:七、八、九年級180名男生身高:
注:表中每組可含最低值,不含最高值.
根據(jù)表中的數(shù)據(jù),請你給校服生產(chǎn)廠家指定一份生產(chǎn)計劃思路.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC是銳角三角形,cos22A+sin2A=1.
(Ⅰ)求角A;
(Ⅱ)若BC=1,B=x,求△ABC的周長f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一段河流,河的一側(cè)是以O為圓心,半徑為米的扇形區(qū)域OCD,河的另一側(cè)是一段筆直的河岸l,岸邊有一煙囪AB(不計B離河岸的距離),且OB的連線恰好與河岸l垂直,設OB與圓弧的交點為E.經(jīng)測量,扇形區(qū)域和河岸處于同一水平面,在點C,點O和點E處測得煙囪AB的仰角分別為,和.
(1)求煙囪AB的高度;
(2)如果要在CE間修一條直路,求CE的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某飛機失聯(lián),經(jīng)衛(wèi)星偵查,其最后出現(xiàn)在小島附近,現(xiàn)派出四艘搜救船,為方便聯(lián)絡,船始終在以小島為圓心,100海里為半徑的圓上,船構(gòu)成正方形編隊展開搜索,小島在正方形編隊外(如圖).設小島到的距離為,,船到小島的距離為.
(1)請分別求關于的函數(shù)關系式,并分別寫出定義域;
(2)當兩艘船之間的距離是多少時搜救范圍最大(即最大)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com