【題目】已知集合按照對應關系不能構成從AB的映射的是( ).

A.B.C.D.

【答案】B

【解析】

根據(jù)映射的定義,對 、、、各項逐個加以判斷,可得 、、的對應都能構成的映射,只有項的對應不能構成的映射,由此可得本題的答案.

A的對應法則是,對于的任意一個元素,函數(shù)值,函數(shù)值的集合恰好是集合,且對中任意一個元素,函數(shù)值唯一確定,由此可得該對應能構成的映射,故不選;

B的對應法則是,對于的任意一個元素,

函數(shù)值,又,顯然的對應法則不能構成的映射.

的對應法則是,對中任意一個元素,函數(shù)值,且對中任意一個元素,函數(shù)值唯一確定,由此可得該對應能構成的映射,故不選;

的對應法則是,對中任意一個元素

函數(shù)值,且對中任意一個元素,函數(shù)值唯一確定,由此可得該對應能構成的映射,故不選;

綜上所述,只有的對應不能構成的映射.

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知分別是橢圓C: 的左、右焦點,其中右焦點為拋物線的焦點,點在橢圓C.

1)求橢圓C的標準方程;

2)設與坐標軸不垂直的直線與橢圓C交于A、B兩點,過點且平行直線的直線交橢圓C于另一點N,若四邊形MNBA為平行四邊形,試問直線是否存在?若存在,請求出的斜率;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠家擬舉行雙十一促銷活動,經調查測算,該產品的年銷售量(即該廠的年產量)m萬件與年促銷費用x萬元()滿足.已知年生產該產品的固定投入為8萬元,每生產1萬件該產品需要再投入16萬元,廠家將每件產品的銷售價格定為每件產品年平均成本的1.5倍(產品成本包括固定投入和再投入兩部分資金).

(1)將該產品的年利潤y萬元表示為年促銷費用x萬元的函數(shù);

(2)該廠家年促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù).

1)求實數(shù)的值;

2)若,對任意恒成立,求實數(shù)取值范圍;

3)設,,問是否存在實數(shù)使函數(shù)上的最大值為?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)若,試討論函數(shù)的單調性;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場按月訂購一種家用電暖氣,每銷售一臺獲利潤200元,未銷售的產品返回廠家,每臺虧損50元,根據(jù)往年的經驗,每天的需求量與當天的最低氣溫有關,如果最低氣溫位于區(qū)間,需求量為100臺;最低氣溫位于區(qū)間,需求量為200臺;最低氣溫位于區(qū)間,需求量為300臺。公司銷售部為了確定11月份的訂購計劃,統(tǒng)計了前三年11月份各天的最低氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:

最低氣溫(℃)

天數(shù)

11

25

36

16

2

以最低氣溫位于各區(qū)間的頻率代替最低氣溫位于該區(qū)間的概率.

求11月份這種電暖氣每日需求量(單位:臺)的分布列;

若公司銷售部以每日銷售利潤(單位:元)的數(shù)學期望為決策依據(jù),計劃11月份每日訂購200臺或250臺,兩者之中選其一,應選哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓離心率為,,是橢圓的左、右焦點,以為圓心,為半徑的圓和以為圓心、為半徑的圓的交點在橢圓上.

(1)求橢圓的方程;

(2)設橢圓的下頂點為,直線與橢圓交于兩個不同的點,是否存在實數(shù)使得以為鄰邊的平行四邊形為菱形?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上.

(1)求橢圓的方程;

(2)若不過原點的直線與橢圓相交于兩點,與直線相較于點,且是線段的中點,求面積的最大值.

查看答案和解析>>

同步練習冊答案