【題目】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結論:
①f(0)f(1)>0; ②f(0)f(1)<0;
③f(0)f(3)>0; ④f(0)f(3)<0.
其中正確結論的序號是________.
【答案】②③
【解析】∵f′(x)=3x2-12x+9=3(x-1)(x-3),
由f′(x)<0,得1<x<3,
由f′(x)>0,
得x<1或x>3,
∴f(x)在區(qū)間(1,3)上是減函數,在區(qū)間(-∞,1),(3,+∞)上是增函數.
又a<b<c,f(a)=f(b)=f(c)=0,
∴y極大值=f(1)=4-abc>0,
y極小值=f(3)=-abc<0.
∴0<abc<4.
∴a,b,c均大于零,或者a<0,b<0,c>0.又x=1,x=3為函數f(x)的極值點,后一種情況不可能成立,如圖.
∴f(0)<0.∴f(0)f(1)<0,f(0)f(3)>0.∴正確結論的序號是②③.
科目:高中數學 來源: 題型:
【題目】如圖,建立平面直角坐標系, 軸在地平面上, 軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.
(1)求炮的最大射程;
(2)設在第一象限有一飛行物(忽略其大。,其飛行高度為3.2千米,試問它的橫坐標不超過多少時,炮彈可以擊中它?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】心理學家發(fā)現(xiàn)視覺和空間能力與性別有關,某數學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學,給所有同學幾何和代數各一題,讓各位同學自由選擇一道題進行解答.統(tǒng)計情況如下表:(單位:人)
幾何題 | 代數題 | 總計 | |
男同學 | |||
女同學 | |||
總計 |
(1)能否據此判斷有的把握認為視覺和空間能力與性別有關?
(2)經過多次測試發(fā)現(xiàn):女生甲解答一道幾何題所用的時間在分鐘,女生乙解答一道幾何題所用的時間在分鐘,現(xiàn)甲、乙兩人獨立解答同一道幾何題,求乙比甲先解答完的概率;
(3)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對她們的答題情況進行研究,記甲、乙兩名女生被抽到的人數為,求的分布列及數學期望.
附表及公式
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經濟收入.紫甘薯對環(huán)境溫度要求較高,根據以往的經驗,隨著溫度的升高,其死亡株數成增長的趨勢.下表給出了2018年種植的一批試驗紫甘薯在不同溫度時6組死亡的株數:
溫度(單位:℃) | 21 | 23 | 24 | 27 | 29 | 32 |
死亡數(單位:株) | 6 | 11 | 20 | 27 | 57 | 77 |
經計算:,,,.
其中分別為試驗數據中的溫度和死亡株數,.
(1)與是否有較強的線性相關性? 請計算相關系數(精確到)說明.
(2)并求關于的回歸方程(和都精確到);
(3)用(2)中的線性回歸模型預測溫度為時該批紫甘薯死亡株數(結果取整數).
附:對于一組數據,,……,,
①線性相關系數,通常情況下當大于0.8時,認為兩
個變量有很強的線性相關性.
②其回歸直線的斜率和截距的最小二乘估計分別為:
;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點及圓:.
(1)若直線過點且與圓心的距離為1,求直線的方程;
(2)若過點的直線與圓交于、兩點,且,求以為直徑的圓的方程;
(3)若直線與圓交于,兩點,是否存在實數,使得過點的直線垂直平分弦?若存在,求出實數的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=2n+2-4.
(1)求數列{an}的通項公式;
(2)設bn=an·log2an,求數列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:,點,過點M且垂直于CM的直線交圓C于A,B兩點,過A,B兩點分別作圓C的切線,兩切線相交于點P,則過點P且平行于AB的直線方程為______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com