【題目】已知關(guān)于的不等式.
(1)不等式的解集為,求實(shí)數(shù)的值;
(2)在(1)的條件下,求不等式的解集;
(3)解關(guān)于的不等式.
【答案】(1);(2);(3)見(jiàn)解析.
【解析】
(1)根據(jù)不等式的解與對(duì)應(yīng)的方程的根的關(guān)系結(jié)合韋達(dá)定理可求實(shí)數(shù)的值.
(2)移項(xiàng)通分后可把分式不等式轉(zhuǎn)化為一元二次不等式,注意分母不為零.
(3)就五種情形分類(lèi)討論可得不等式的解.
(1)因?yàn)椴坏仁?/span>的解集為,
所以為的兩個(gè)根,所以,
解得,故.
(2)由(1)得即為,故,
所以,所以,故原不等式的解集為.
(3)不等式等價(jià)于,
整理得到:.
當(dāng)時(shí),不等式的解為.
當(dāng)時(shí),不等式的解為.
當(dāng)時(shí),,故不等式的解為.
當(dāng)時(shí),,不等式的解為.
當(dāng)時(shí),,故不等式的解為.
綜上,當(dāng)時(shí),不等式的解為;當(dāng)時(shí),不等式的解為;
當(dāng)時(shí),不等式的解為;當(dāng)時(shí),不等式的解為;
當(dāng)時(shí),不等式的解為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為(為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式為大于0的常數(shù)).按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質(zhì)量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,求恰好取到2件優(yōu)等品的概率;
(Ⅱ)根據(jù)測(cè)得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計(jì)量的值如下表:
|
| ||
75.3 | 24.6 | 18.3 | 101.4 |
(i)根據(jù)所給統(tǒng)計(jì)量,求關(guān)于的回歸方程;
(ii)已知優(yōu)等品的收益(單位:千元)與的關(guān)系,則當(dāng)優(yōu)等品的尺寸為為何值時(shí),收益的預(yù)報(bào)值最大?(精確到0.1)
附:對(duì)于樣本,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動(dòng)點(diǎn)到直線和距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分別為BC,AD的中點(diǎn),點(diǎn)M在線段PD上.
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)若M為PD的中點(diǎn),求證:ME∥平面PAB;
(Ⅲ)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的是( )
A.函數(shù)在區(qū)間上有且只有個(gè)零點(diǎn)
B.若函數(shù),則
C.如果函數(shù)在上單調(diào)遞增,那么它在上單調(diào)遞減
D.若函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),則函數(shù)為奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解高一新生對(duì)文理科的選擇,對(duì)1 000名高一新生發(fā)放文理科選擇調(diào)查表,統(tǒng)計(jì)知,有600名學(xué)生選擇理科,400名學(xué)生選擇文科.分別從選擇理科和文科的學(xué)生隨機(jī)各抽取20名學(xué)生的數(shù)學(xué)成績(jī)得如下累計(jì)表:
分?jǐn)?shù)段 | 理科人數(shù) | 文科人數(shù) |
正 | 正 | |
正 | ||
(1)從統(tǒng)計(jì)表分析,比較選擇文理科學(xué)生的數(shù)學(xué)平均分及學(xué)生選擇文理科的情況,并繪制理科數(shù)學(xué)成績(jī)的頻率分布直方圖.
(2)根據(jù)你繪制的頻率分布直方圖,估計(jì)意向選擇理科的學(xué)生的數(shù)學(xué)成績(jī)的中位數(shù)與平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2) 若函數(shù)有兩個(gè)零點(diǎn), ,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com