【題目】一半徑為的水輪,水輪圓心距離水面2,已知水輪每分鐘轉(zhuǎn)動(dòng)(按逆時(shí)針方向)3圈,當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(shí)開始計(jì)時(shí),即從圖中點(diǎn)開始計(jì)算時(shí)間.

(1)當(dāng)秒時(shí)點(diǎn)離水面的高度_________

(2)將點(diǎn)距離水面的高度(單位: )表示為時(shí)間(單位: )的函數(shù),則此函數(shù)表達(dá)式為_______________ .

【答案】

【解析】

1利用直角三角形的邊角關(guān)系,即可求出5秒后點(diǎn)P離開水面的距離;2由題意求值,結(jié)合的情況可求出的值,即得函數(shù)解析式.

解:1秒時(shí),水輪轉(zhuǎn)過角度為,

中,;

中,,

此時(shí)點(diǎn)離開水面的高度為;

2由題意可知,,

設(shè)角是以Ox為始邊,為終邊的角,

由條件得,其中;

代入,得

;

所求函數(shù)的解析式為

故答案為:12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某種細(xì)菌的適宜生長(zhǎng)溫度為,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:)變化的規(guī)律,收集數(shù)據(jù)如下:

溫度/

12

14

16

18

20

22

24

繁殖數(shù)量/個(gè)

20

25

33

27

51

112

194

對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如下表所示:

18

66

3.8

112

4.3

1428

20.5

其中,.

(1)請(qǐng)繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于的回歸方程類型(結(jié)果精確到0.1);

(2)當(dāng)溫度為時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?

參考公式:對(duì)于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為:.參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)頂點(diǎn)是,離心率為

)求橢圓的方程;

)已知矩形的四條邊都與橢圓相切,設(shè)直線AB方程為,求矩形面積的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心為的圓經(jīng)過點(diǎn),且圓心在直線軸上.

(Ⅰ)求圓的方程;

(Ⅱ)過點(diǎn)的動(dòng)直線與圓相交于兩點(diǎn).當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,,,分別為的中點(diǎn).

(Ⅰ)證明:平面∥平面;

(Ⅱ)若,

(1)求平面與平面所成銳二面角的余弦值;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在點(diǎn)處的切線與直線平行.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)設(shè)

i)若函數(shù)上恒成立,求的最大值;

ii)當(dāng)時(shí),判斷函數(shù)有幾個(gè)零點(diǎn),并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一半徑為的水輪,水輪圓心距離水面2,已知水輪每分鐘轉(zhuǎn)動(dòng)(按逆時(shí)針方向)3圈,當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(shí)開始計(jì)時(shí),即從圖中點(diǎn)開始計(jì)算時(shí)間.

(1)當(dāng)秒時(shí)點(diǎn)離水面的高度_________;

(2)將點(diǎn)距離水面的高度(單位: )表示為時(shí)間(單位: )的函數(shù),則此函數(shù)表達(dá)式為_______________ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列四個(gè)幾何體中,它們的三視圖(主視圖、左視圖、俯視圖)中有且僅有兩個(gè)相同,而另一個(gè)不同的幾何體是(

1)棱長(zhǎng)為1的正方體

2)底面直徑和高均為1的圓柱

3)底面直徑和高均為1的圓錐

4)底面邊長(zhǎng)為1、高為2的正四棱柱

A.2)(3)(4B.1)(2)(3

C.1)(3)(4D.1)(2)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),過直線左側(cè)的動(dòng)點(diǎn)于點(diǎn)的角平分線交軸于點(diǎn),且,記動(dòng)點(diǎn)的軌跡為曲線

1)求曲線的方程;

2)過點(diǎn)作直線交曲線兩點(diǎn),點(diǎn)上,且軸,試問:直線是否恒過定點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案