設(shè)平面向量
a
=(1,2),
b
=(-2,y),若
a
b
,則y=
 
考點(diǎn):平行向量與共線向量
專題:平面向量及應(yīng)用
分析:直接利用向量共線的坐標(biāo)表示列式計(jì)算
解答: 解:∵
a
=(1,2),
b
=(-2,y),
a
b
,
∴1×y=2×(-2)
∴y=-4
故答案為:-4
點(diǎn)評(píng):本題考查向量的平行,平行問(wèn)題是一個(gè)重要的知識(shí)點(diǎn),在高考題中常常出現(xiàn),常與向量的模、向量的坐標(biāo)表示等聯(lián)系在一起,要特別注意垂直與平行的區(qū)別.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3+ax2-a2x+m(a>0)
(1)若a=1時(shí)函數(shù)f(x)有三個(gè)互不相同的零點(diǎn),求實(shí)數(shù)m的取值范圍;
(2)若對(duì)任意的a∈[3,6],x∈[-2,2],不等式f(x)≤1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
log3x,x>0
3x,x≤0
,且關(guān)于x的方程f(x)+x+3a=0有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果a⊥b,那么a與b( 。
A、一定相交B、一定異面
C、一定共面D、一定不平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在(0,
π
2
)上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且對(duì)任意x∈(0,
π
2
),都有f′(x)sinx<f(x)cosx,則不等式f(x)<2f(
π
6
)sinx的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線3x+4y+2=0被圓x2+y2-2x-3=0截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+x2
+ax-5
(1)若函數(shù)在(-∞,+∞)總是單調(diào)函數(shù),求:實(shí)數(shù)a的取值范圍;
(2)若函數(shù)在[1,+∞)上總是單調(diào)函數(shù),求:實(shí)數(shù)a的取值范圍;
(3)若函數(shù)在區(qū)間(-3,1)上單調(diào)遞減,求:實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC所在平面內(nèi)一點(diǎn),且滿足|
OB
-
OC
|=|
OB
+
OC
-2
OA
|
,若|AB|=2,|AC|=
3
,則△ABC的外接圓的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的周期為2的函數(shù),且當(dāng)x∈[-1,1)時(shí),f(x)=
-2x2-x+2,-1≤x<0
2x-1,0≤x<1
,f(5)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案