已知f(α)=
sin(π-α)cos(2π-α)tan(-α+
3
2
π)tan(-α-π)
sin(-α-π)

(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且cos(α-
3
2
π)=
1
5
,求f(α)的值.
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,三角函數(shù)的化簡(jiǎn)求值
專(zhuān)題:三角函數(shù)的求值
分析:(1)利用誘導(dǎo)公式對(duì)分子和分母進(jìn)行化簡(jiǎn).
(2)根據(jù)已知條件求得sinα的值,進(jìn)而根據(jù)平方關(guān)系求得cosα代入函數(shù)解析式求得答案.
解答: 解:(1)f(α)=
sinα•cosαcotα•(-tanα)
sinα
=-cosα.
(2)cos(α-
3
2
π)=-sinα=
1
5

∴sinα=-
1
5
,
∵α是第三象限角,
∴cosα=-
1-
1
25
=-
2
6
5

∴f(α)=-cosα=
2
6
5
點(diǎn)評(píng):本題主要考查了誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系的應(yīng)用.在運(yùn)用誘導(dǎo)公式時(shí)要特別注意三角函數(shù)的符號(hào)和名稱(chēng)的變化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},{bn},a1=1,an=an-1+2n-1,bn=
an-1+1
anan+1
,Sn為數(shù)列{bn}的前n項(xiàng)和,Tn為數(shù)列{Sn}的前n項(xiàng)和.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{bn}的前n項(xiàng)和Sn
(Ⅲ)求證:Tn
n
2
-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,滿(mǎn)足f(-1)=0,且對(duì)任意實(shí)數(shù)x,都有f(x)-x≥0,并且當(dāng)x∈(0,2)時(shí),f(x)≤
1
4
(x+1)2
(1)求f(1)的值.
(2)求f(x)的解析式.
(3)若x∈[-1,1]時(shí),函數(shù)g(x)=f(x)-mx是單調(diào)的,則求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于t的方程t2-zt+4+3i=0(z∈C)有實(shí)數(shù)解,
(1)設(shè)z=5+ai(a∈R),求a的值.
(2)設(shè)z=a+bi(a,b∈R),求|z|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(2a+1)x2+(a2+a)x.
(I)若a=1,求f(x)在區(qū)間[0,3]上的值域;
(Ⅱ)若g(x)=f(x)+ax2-a2x,求函數(shù)g(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某年級(jí)共6個(gè)班,舉行足球賽.
(Ⅰ)若先從6個(gè)班中隨機(jī)抽取兩個(gè)班舉行比賽,則恰好抽中甲班與乙班的概率是多少?
(Ⅱ)若6個(gè)班平均分成兩組,則甲班與乙班恰好在同一組的概率是多少?
(Ⅲ)若6個(gè)班之間進(jìn)行單循環(huán)賽,規(guī)定贏一場(chǎng)得2分,平一場(chǎng)得1分,輸一場(chǎng)得0分.假定任意兩班比賽,贏、平、輸?shù)母怕识枷嗟,求最終甲班得8分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和記為Sn,點(diǎn)(n,Sn)在曲線f(x)=x2-4x(x∈N*)上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an•2n-1,求數(shù)列{bn}的前n項(xiàng)和Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=
n(a1+an)
2
,
(Ⅰ)求證:{an}是等差數(shù)列;
(Ⅱ)若a>0且a2=2a+1,S5=5(3a+1),求證:
1
a
2
1
+
1
a
2
2
+…+
1
a
2
n
n
(1+
a
2
)(1+
2n+1
2
a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:x2-4x-5≤0,q:|x-3|<a(a>0),若p是q的充分不必要條件,則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案