【題目】如圖,在四棱錐中,平面,底面為菱形,且,分別為、中點(diǎn).

(1)求點(diǎn)到平面的距離;

(2)求證:平面平面

【答案】(1);(2)見解析.

【解析】【試題分析】(1)借助題設(shè)與已知條件運(yùn)用等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想將點(diǎn)到面的距離轉(zhuǎn)化為另一個(gè)點(diǎn)到平面的距離;(2)依據(jù)題設(shè)條件,先運(yùn)用線面垂直的判定定理證明線面垂直,進(jìn)而運(yùn)用面面垂直的判定定理證明面面垂直。

(1)解:如圖,

的中點(diǎn),連接、,

因?yàn)榈酌?/span>為菱形,且,

所以底面為正方形.

、分別為、中點(diǎn),

,,,

,∴四邊形是平行四邊形,∴

平面,平面,∴平面,

∴點(diǎn)與點(diǎn)到平面的距離相等,即距離為

(2)證明:由(1)知,

平面,∴

,,∴平面,

,又∵

平面,∴平面

平面,∴平面平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的數(shù)據(jù)如下表:

x

x1

x2

x3

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

-2

0

(1)求x1,x2,x3的值及函數(shù)f(x)的表達(dá)式;

(2)將函數(shù)f(x)的圖象向左平移π個(gè)單位,可得到函數(shù)g(x)的圖象,求函數(shù)y=f(x)·g(x)在區(qū)間的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線為.

(1)求的解析式.

(2)若對任意,有成立,求實(shí)數(shù)的取值范圍.

(3)證明:對任意成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點(diǎn)數(shù)記為x;小李后擲一枚骰子,向上的點(diǎn)數(shù)記為y,

(1)在直角坐標(biāo)系xOy,(x,y)為坐標(biāo)的點(diǎn)共有幾個(gè)?試求點(diǎn)(x,y)落在直線x+y=7上的概率;

(2)規(guī)定:x+y10,則小王贏;x+y4,則小李贏,其他情況不分輸贏.試問這個(gè)游戲規(guī)則公平嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在點(diǎn)處的切線方程為

(1)求的解析式;

(2)求的單調(diào)區(qū)間;

(3)若函數(shù)在定義域內(nèi)恒有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016~2017·鄭州高一檢測)過點(diǎn)M(1,2)的直線l與圓C:(x-3)2+(y-4)2=25交于A,B兩點(diǎn),C為圓心,當(dāng)∠ACB最小時(shí),直線l的方程是 (  )

A. x-2y+3=0 B. 2xy-4=0

C. xy+1=0 D. xy-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.

(1)求數(shù)列{bn}的通項(xiàng)公式;

(2)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中:

①線性回歸方程必過點(diǎn);

②在回歸方程中,當(dāng)變量增加一個(gè)單位時(shí), 平均增加5個(gè)單位;

③在回歸分析中,相關(guān)指數(shù)0.80的模型比相關(guān)指數(shù)0.98的模型擬合的效果要好;

④在回歸直線中,變量時(shí),變量的值一定是-7

其中假命題的個(gè)數(shù)是 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià)將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù)

單價(jià)x/

8

8.2

8.4

8.6

8.8

9

銷量y/

90

84

83

80

75

68

(1)求線性回歸方程=x+其中=-20, =- .

(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系且該產(chǎn)品的成本是4/,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

同步練習(xí)冊答案