對于三次函數(shù)。
定義:(1)設是函數(shù)的導數(shù)的導數(shù),若方程有實數(shù)解,則稱點為函數(shù)的“拐點”;
定義:(2)設為常數(shù),若定義在上的函數(shù)對于定義域內的一切實數(shù),都有成立,則函數(shù)的圖象關于點對稱。
己知,請回答下列問題:
(1)求函數(shù)的“拐點”的坐標
(2)檢驗函數(shù)的圖象是否關于“拐點”對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結論(不必證明)
(3)寫出一個三次函數(shù),使得它的“拐點”是(不要過程)

(1)“拐點”坐標是;
(2)一般地,三次函數(shù)的“拐點”是,它就是的對稱中心。
或者:任何一個三次函數(shù)都有拐點;任何一個三次函數(shù)都有對稱中心;任何一個三次函數(shù)平移后可以是奇函數(shù).
(3).

解析試題分析:(1)依題意,計算 ,.
 ,得,再據(jù),可得“拐點”坐標是.
(2)由(1)知“拐點”坐標是.
根據(jù)定義(2),考查
=
==,
作出結論:
一般地,三次函數(shù)的“拐點”是,它就是的對稱中心.
或者:任何一個三次函數(shù)都有拐點;任何一個三次函數(shù)都有對稱中心;任何一個三次函數(shù)平移后可以是奇函數(shù).
(3)根據(jù)(2)寫出或寫出一個具體的函數(shù),如.
試題解析:(1)依題意,得: ,
。        2分
 ,即。∴,又
的“拐點”坐標是.。        4分
(2)由(1)知“拐點”坐標是.
=
==,
由定義(2)知:關于點對稱。        8分
一般地,三次函數(shù)的“拐點”是,它就是的對稱中心.                          10分
(或者:任何一個三次函數(shù)都有拐點;任何一個三次函數(shù)都有對稱中心;任何一個三次函數(shù)平移后可以是奇函數(shù)  )都可以給分
(3)或寫出一個具體的函數(shù),如.    12分
考點:新定義問題,導數(shù)的計算,函數(shù)圖象的對稱性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

定義在實數(shù)集上的函數(shù)。
⑴求函數(shù)的圖象在處的切線方程;
⑵若對任意的恒成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)處都取得極值.
(1)求函數(shù)的解析式;
(2)求函數(shù)在區(qū)間[-2,2]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=-ax(a∈R,e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)f(x)的單調性;
(2)若a=1,函數(shù)在區(qū)間(0,+)上為增函數(shù),求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為實數(shù),),,⑴若,且函數(shù)的值域為,求的表達式;
⑵設,且函數(shù)為偶函數(shù),判斷是否大0?
⑶設,當時,證明:對任意實數(shù),(其中的導函數(shù)) .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)當時,求函數(shù)的極大值;
(2)若函數(shù)的圖象與函數(shù)的圖象有三個不同的交點,求的取值范圍;
(3)設,當時,求函數(shù)的單調減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在點處取得極小值-4,使其導數(shù)的取值范圍為,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為常數(shù),且,函數(shù), 
是自然對數(shù)的底數(shù)).
(1)求實數(shù)的值;
(2)求函數(shù)的單調區(qū)間;
(3)當時,是否同時存在實數(shù)),使得對每一個,直線與曲線都有公共點?若存在,求出最小的實數(shù)和最大的實數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知函數(shù)f (x)在R上滿足f (x)=2·f (2-x)-x2+8x-8,則f (2)=       

查看答案和解析>>

同步練習冊答案