已知f(x)在區(qū)間(0,+∞)上是減函數(shù),那么f(a2-a+1)與f(
3
4
)的大小關(guān)系是( 。
A、f(a2-a+1)>f(
3
4
B、f(a2-a+1)≤f(
3
4
C、f(a2-a+1)≥f(
3
4
D、f(a2-a+1)<f(
3
4
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:判斷a2-a+1與
3
4
的大小關(guān)系,然后利用函數(shù)的單調(diào)性進(jìn)行判斷大小關(guān)系.
解答: 解:∵a2-a+1=(a-
1
2
2+
3
4
3
4
,f(x)在(0,+∞)上為減函數(shù),
∴f(a2-a+1)≤f(
3
4
).
故選:B.
點(diǎn)評:本題主要考查函數(shù)單調(diào)性應(yīng)用,利用配方法比較a2-a+1與
3
4
的大小關(guān)系,是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若C
 
n
12
=C
 
2n-3
12
,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,M為橢圓上一點(diǎn),且
MF1
MF2
的最大值的取值范圍是[c2,2c2],其中c是橢圓的半焦距,則橢圓的離心率取值范圍是( 。
A、[
3
3
,
2
2
]
B、[
1
3
,
1
2
]
C、[
2
2
,1)
D、[
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出命題p:f(x)=sinx+
3
cosx的周期為π;命題q:若數(shù)列{an}前n項(xiàng)和Sn=n2+2n,則數(shù)列{an}為等差數(shù)列,則下列四個(gè)命題“p且q”,“p或q”,“非p”,“非q”中,真命題個(gè)數(shù)為( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R+,滿足abc(a+b+c)=1,則S=(a+c)(b+c)的最小值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角600°的終邊上有一點(diǎn)(-3,a),則a的值是( 。
A、-
3
B、-3
3
C、±
3
D、±3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
36
+
y2
9
=1的內(nèi)接矩形的最大面積是( 。
A、36B、18C、54D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二維空間中,圓的一維測度(周長)l=2πr,二維測度(面積)S=πr2;三維空間中,球的二維測度(表面積)S=4πr2,三維測度(體積)V=
4
3
πr3.應(yīng)用合情推理,若四維空間中,“超球”的三維測度V=8πr3,則其四維測度W=(  )
A、2πr4
B、3πr4
C、4πr4
D、6πr4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x3與x軸,直線x=1圍成的封閉圖形的面積為( 。
A、
1
6
B、
1
4
C、
1
3
D、
1
2

查看答案和解析>>

同步練習(xí)冊答案