【題目】在數(shù)列中,,
(I)求,,的值,由此猜想數(shù)列的通項(xiàng)公式:
(Ⅱ)用數(shù)學(xué)歸納法證明你的猜想.
【答案】
【解析】
試題(1)數(shù)學(xué)歸納法是一種重要的數(shù)學(xué)思想方法,主要用于解決與正整數(shù)有關(guān)的數(shù)學(xué)問(wèn)題;(2)用數(shù)學(xué)歸納法證明等式問(wèn)題,要“先看項(xiàng)”,弄清等式兩邊的構(gòu)成規(guī)律,等式兩邊各有多少項(xiàng),初始值是多少;(3)由時(shí)等式成立,推出時(shí)等式成立,一要找出等式兩邊的變化(差異),明確變形目標(biāo);二要充分利用歸納假設(shè),進(jìn)行合理變形,正確寫出證明過(guò)程,由于“猜想”是“證明”的前提和“對(duì)象”,務(wù)必保證猜想的正確性,同時(shí)必須嚴(yán)格按照數(shù)學(xué)歸納法的步驟書(shū)寫.
試題解析:解a1==,a2=,a3=,a4=,猜想an=,下面用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時(shí),a1==,猜想成立.
②假設(shè)當(dāng)n=k(k≥1,k∈N*)時(shí)猜想成立,即=.
則當(dāng)n=k+1時(shí),
===,
所以當(dāng)n=k+1時(shí)猜想也成立,
由①②知,對(duì)n∈N*,an=都成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)市民節(jié)能環(huán)保意識(shí),某市面向全市征召義務(wù)宣傳志愿者,現(xiàn)從符合條件的500名志愿者中隨機(jī)抽取100名志愿者,他們的年齡情況如下表所示:
分組(單位:歲) | 頻數(shù) | 頻率 |
5 | 0.05 | |
① | 0.20 | |
35 | ② | |
30 | 0.30 | |
10 | 0.10 | |
總計(jì) | 100 | 1.00 |
(1)頻率分布表中的①②位置應(yīng)填什么數(shù)據(jù)?
(2)補(bǔ)全如圖所示的頻率分布直方圖,再根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用二分法求函數(shù)的一個(gè)正零點(diǎn)的近似值(精確度為0.1)時(shí),依次計(jì)算得到如下數(shù)據(jù):f(1)=–2,f(1.5)=0.625,f(1.25)≈–0.984,f(1.375)≈–0.260,關(guān)于下一步的說(shuō)法正確的是( )
A. 已經(jīng)達(dá)到精確度的要求,可以取1.4作為近似值
B. 已經(jīng)達(dá)到精確度的要求,可以取1.375作為近似值
C. 沒(méi)有達(dá)到精確度的要求,應(yīng)該接著計(jì)算f(1.4375)
D. 沒(méi)有達(dá)到精確度的要求,應(yīng)該接著計(jì)算f(1.3125)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率是,過(guò)點(diǎn)作斜率為的直線交橢圓于兩點(diǎn),當(dāng)直線垂直于軸時(shí),.
(1)求橢圓的方程
(2)當(dāng)變化時(shí),在軸上是否存在點(diǎn),使得是以為底的等腰三角形?若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,當(dāng)時(shí),這兩個(gè)函數(shù)圖象的交點(diǎn)個(gè)數(shù)為____個(gè).(參考數(shù)值:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙二人進(jìn)行乒乓球比賽,已知每一局比賽甲勝乙的概率是,假設(shè)每局比賽結(jié)果相互獨(dú)立.
(Ⅰ)比賽采用三局兩勝制,即先獲得兩局勝利的一方為獲勝方,這時(shí)比賽結(jié)束.求在一場(chǎng)比賽中甲獲得比賽勝利的概率;
(Ⅱ)比賽采用三局兩勝制,設(shè)隨機(jī)變量為甲在一場(chǎng)比賽中獲勝的局?jǐn)?shù),求的分布列和均值;
(Ⅲ)有以下兩種比賽方案:方案一,比賽采用五局三勝制;方案二,比賽采用七局四勝制.問(wèn)哪個(gè)方案對(duì)甲更有利.(只要求直接寫出結(jié)果)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某單位甲、乙、丙三個(gè)部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時(shí)間的調(diào)查.
(1)應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取多少人?
(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若直線與曲線和分別交于兩點(diǎn)直線,且曲線在處的切線與在處的切線相互平行,求正數(shù)的最大值;
(2)若有三個(gè)不同的零點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com