【題目】如圖,在四棱錐P—ABCD中,底面ABCD為矩形,DP⊥平面PBC,E,F(xiàn)分別為PA與BC的中點.
(1)求證:BC⊥平面PDC;
(2)求證:EF//平面PDC.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,其中, 為自然對數(shù)的底數(shù).
(1)設(shè)是函數(shù)的導(dǎo)函數(shù),討論的單調(diào)性;
(2)若關(guān)于的方程在上有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l的方程為,圓O的方程為.
(1)當(dāng)m取一切實數(shù)時,直線l與圓O都有公共點,求r的取值范圍;
(2)當(dāng)時,直線與圓O交于M,N兩點,若,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (其中為參數(shù)).以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長度,曲線的極坐標(biāo)方程為.
(1)把曲線的方程化為普通方程, 的方程化為直角坐標(biāo)方程;
(2)若曲線, 相交于兩點, 的中點為,過點做曲線的垂線交曲線于兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足, .
(1)求的通項公式;
(2)各項均為正數(shù)的等比數(shù)列中, , ,求的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com