【題目】已知函數(shù)的圖象與x軸恰有兩個不同公共點,則m =_______.
【答案】0或
【解析】
令x3x2﹣m=0,化為m=x3x2=g(x),g′(x)=3x2﹣3x=3x(x﹣1),令g′(x)=0,解得x=0或1.利用導數(shù)可得其單調(diào)性極值,根據(jù)函數(shù)f(x)=x3x2﹣m的圖象與x軸恰有兩個不同公共點,可得m.
令x3x2﹣m=0,化為m=x3x2=g(x),
g′(x)=3x2﹣3x=3x(x﹣1),
令g′(x)=0,解得x=0或1.
∴函數(shù)g(x)在(﹣∞,0)上單調(diào)遞增,
在(0,1)上單調(diào)遞減,在(1,+∞)單調(diào)遞增.
g(0)=0,g(1).
∴函數(shù)g(x)的大致圖像如圖:
∵函數(shù)f(x)=x3x2﹣m的圖象與x軸恰有兩個不同公共點,則m或0.
故答案為:0或.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,從一個面積為的半圓形鐵皮上截取兩個高度均為的矩形,并將截得的兩塊矩形鐵皮分別以,為母線卷成兩個高均為的圓柱(無底面,連接部分材料損失忽略不計).記這兩個圓柱的體積之和為.
(1)將表示成的函數(shù)關系式,并寫出的取值范圍;
(2)求兩個圓柱體積之和的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD為矩形,DP⊥平面PBC,E,F(xiàn)分別為PA與BC的中點.
(1)求證:BC⊥平面PDC;
(2)求證:EF//平面PDC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若,求函數(shù)的極值;
(2)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍;
(3)若,設函數(shù)在上的極值點為,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設奇函數(shù)在上是單調(diào)減函數(shù),且,若函數(shù)對所有的都成立,則的取值范圍是_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com