【題目】如圖,在三棱柱中,面,,,,是棱上一點.
(1)求證:;
(2)若分別為、的中點,求證://平面.
【答案】(1)見解析(2)見解析
【解析】
(1)根據勾股定理得BC⊥AC,再根據線面垂直判定與性質定理得結果,(2)根據平行四邊形性質得線線平行,再根據線面平行判定定理得結果.
證明:(Ⅰ)因為三棱柱ABC-A1B1C1中CC1⊥平面ABC,
所以CC1⊥BC.
因為AC=BC=2,,
所以由勾股定理的逆定理知BC⊥AC.
又因為AC∩CC1=C,
所以BC⊥平面ACC1A1.
因為AM平面ACC1A1,
所以BC⊥AM.
(Ⅱ)過N作NP∥BB1交AB1于P,連結MP ,則NP∥CC1.
因為M,N分別為CC1, AB中點,
所以 ,.
因為 BB1=CC1,所以 NP=CM.
所以 四邊形MCNP是平行四邊形.所以 CN//MP.
因為 CN平面AB1M,MP平面AB1M,
所以 CN //平面AB1M.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)證明:AE⊥平面PCD;
(2)求二面角A-PD-C的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為準備參加市運動會,對本校高一、高二兩個田徑隊中30名跳高運動員進行了測試,并用莖葉圖表示出本次測試30人的跳高成績(單位:cm).跳高成績在175cm以上(包括175cm)定義為“合格”,成績在175cm以下定義為“不合格”.
(1)如果從所有運動員中用分層抽樣抽取“合格”與“不合格”的人數共10人,問就抽取“合格”人數是多少?
(2)若從所有“合格”運動員中選取2名,用X表示所選運動員來自高一隊的人數,試寫出X的分布圖,并求X的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(2x﹣)x,則下列結論中正確的是( 。
A.若﹣3≤m<n,則f(m)<f(n)
B.若m<n≤0,則f(m)<f(n)
C.若f(m)<f(n),則m2<n2
D.若f(m)<f(n),則m3<n3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上除A、B外的一個動點,DC垂直于半圓O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB= .
證明:平面ADE⊥平面ACD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓: 的長軸長為6,且橢圓與圓: 的公共弦長為.
(1)求橢圓的方程.
(2)過點作斜率為的直線與橢圓交于兩點, ,試判斷在軸上是否存在點,使得為以為底邊的等腰三角形.若存在,求出點的橫坐標的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在下列向量組中,可以把向量=(3,2)表示出來的是( )
A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)
C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】洛薩·科拉茨是德國數學家,他在1937年提出了一個著名的猜想:任給一個正整數,如果是偶數,就將它減半(即);如果是奇數,則將它乘3加1(即),不斷重復這樣的運算,經過有限步后,一定可以得到1,如初始正整數為6,按照上述變換規(guī)則,我們得到一個數列:6,3,10,5,16,8,4,2,1.對科拉茨猜想,目前誰也不能證明,更不能否定,如果對正整數按照上述規(guī)則實施變換(注:1可以多次出現(xiàn))后的第九項為1,則的所有可能取值的集合為_________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com