設(shè)函數(shù)
解不等式;(4分)
事實上:對于成立,當(dāng)且僅當(dāng)時取等號.由此結(jié)論證明:.(6分)

(1);(2)答案見詳解

解析試題分析:(1)將函數(shù)代入,可得指數(shù)不等式,利用分解因式法解不等式即可;(2)利用時,,得,將替換為,進行倒數(shù)代換即可.
試題解析:(1)由,得 即,
所以,所以 ;  (4分)
(2)由已知當(dāng)時,,而此時,所以, 所以  . (6分)
考點:1、不等式解法;2、不等式證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)在點處的切線與圓相切,求的值;
(2)當(dāng)時,函數(shù)的圖像恒在坐標(biāo)軸軸的上方,試求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè).
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ) 若對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)如果函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍;
(Ⅱ)是否存在正實數(shù),使得函數(shù)在區(qū)間內(nèi)有兩個不同的零點(是自然對數(shù)的底數(shù))?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若對任意,函數(shù)上都有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若函數(shù)處取得極值,且函數(shù)只有一個零點,求的取值范圍.
(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)處的切線垂直軸,求的值;
(Ⅱ)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(Ⅲ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

,其中.
(1)當(dāng)時,求函數(shù)在區(qū)間上的最大值;
(2)當(dāng)時,若恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案