設數(shù)列,即當時,記.記. 對于,定義集合的整數(shù)倍,,且.
(1)求集合中元素的個數(shù);
(2)求集合中元素的個數(shù).

(1)2     (2)1008

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),數(shù)列滿足
⑴求數(shù)列的通項公式;
⑵設,若恒成立,求實數(shù)的取值范圍;
⑶是否存在以為首項,公比為的數(shù)列,使得數(shù)列中每一項都是數(shù)列中不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設等差數(shù)列的前項和,且.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列及其前項和滿足:,).
(1)證明:設,是等差數(shù)列;(2)求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列滿足,且.
(1)求
(2)是否存在實數(shù)t,使得,且{}為等差數(shù)列?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設等差數(shù)列的前項和為,且,.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設數(shù)列的前項和為,且 (為常數(shù)),令,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于給定數(shù)列,如果存在實常數(shù)使得對于任意都成立,我們稱數(shù)列是“數(shù)列”.
(Ⅰ)若,,,數(shù)列、是否為“數(shù)列”?若是,指出它對應的實常數(shù),若不是,請說明理由;
(Ⅱ)證明:若數(shù)列是“數(shù)列”,則數(shù)列也是“數(shù)列”;
(Ⅲ)若數(shù)列滿足,為常數(shù).求數(shù)列項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足
(1)設是公差為的等差數(shù)列.當時,求的值;
(2)設求正整數(shù)使得一切均有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,
(1)判斷數(shù)列是否是等差數(shù)列,并說明理由;
(2)如果,試寫出數(shù)列的通項公式;
(3)在(2)的條件下,若數(shù)列得前n項和為,問是否存在這樣的實數(shù),使當且僅當時取得最大值。若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

同步練習冊答案