設橢圓E:
x2
a2
+
y2
1-a2
=1的焦點在x軸上,若橢圓E的焦距為1,求橢圓E的方程.
考點:橢圓的標準方程
專題:圓錐曲線的定義、性質與方程
分析:由于橢圓E:
x2
a2
+
y2
1-a2
=1的焦點在x軸上,橢圓E的焦距為1.可得a2-(1-a2)=(
1
2
)2
,a2>1-a2>0,解出即可.
解答: 解:∵橢圓E:
x2
a2
+
y2
1-a2
=1的焦點在x軸上,橢圓E的焦距為1.
a2-(1-a2)=(
1
2
)2
,a2>1-a2>0,
解得a2=
5
8

∴橢圓E的方程為
8x2
5
+
8y2
3
=1.
點評:本題考查了橢圓的標準方程及其性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在坐標原點,焦點在x軸上,其左、右焦點分別為F1,F(xiàn)2,短軸長為2
3
.點P在橢圓C上,且滿足△PF1F2的周長為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設過點(-1,0)的直線l與橢圓C相交于A,B兩點,試問在x軸上是否存在一個定點M,使得
MA
MB
恒為定值?若存在,求出該定值及點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經過點P(
4
3
1
3
).求橢圓C的方程及離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),A,B是橢圓上的兩點,線段AB的垂直平分線與x軸相交于點P(x0,0),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個正六棱錐的底面邊長為6,體積為48,求其側面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C的頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為
3
2
2

(1)求拋物線C的方程;
(2)已知A,B是拋物線C上的兩點,過A,B兩點分別作拋物線C的切線,兩條切線的交點為M,設線段AB的中點為N,證明:存在λ∈R,使得
MN
OF
;
(3)在(2)的條件下,若拋物線C的切線BM與y軸交于點R,直線AB兩點的連線過點F,試求△ABR面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為
64π
3
立方米.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為4千元.設該容器的總建造費用為y千元.
(Ⅰ)將y表示成r的函數(shù)f(r),并求該函數(shù)的定義域;
(Ⅱ)討論函數(shù)f(r)的單調性,并確定r和l為何值時,該容器的建造費用最小,并求出最小建造費用.
(參考公式:球的表面積公式S=4πr2,球的體積公式V=
4
3
πr3,圓柱體的側面積公式S=2πrl,圓柱體的體積公式V=πr2l)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在橢圓中,稱過焦點且垂直于長軸的直線被橢圓所截得的弦為橢圓的“通徑”.已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,其離心率為
1
2
,通徑長為3.
(1)求橢圓C的方程;
(2)如圖所示,過點F1的直線與橢圓交于A、B兩點,I1、I2分別為△F1BF2、△F1AF2的內心,延長BF2與橢圓交于點M,求四邊形F1I2F2I1的面積與△AF2B的面積的比值;
(3)在x軸上是否存在定點P,使得
PM
PB
為定值?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4lnx-
1
2
x2
(Ⅰ)求函數(shù)f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調區(qū)間和極值.

查看答案和解析>>

同步練習冊答案