已知在三棱錐A-BCD中,AC=
2
,其余各棱長均為1,則二面角A-CD-B的余弦值為
 
考點(diǎn):二面角的平面角及求法
專題:空間角
分析:先作出二面角A-CD-B的平面角,再利用余弦定理求解即可.
解答: 解:由已知可得AD⊥DC
又由其余各棱長都為1得正三角形BCD,取CD得中點(diǎn)E,連BE,則BE⊥CD
在平面ADC中,過E作AD的平行線交AC于點(diǎn)F,則∠BEF為二面角A-CD-B的平面角
∵EF=
1
2
(三角形ACD的中位線),BE=
3
2
(正三角形BCD的高),BF=
2
2
(等腰RT三角形ABC,F(xiàn)是斜邊中點(diǎn))
∴cos∠BEF=
EF2+BE2-BF2
2×BE×EF
=
1
4
+
3
4
-
1
2
3
2
×
1
2
=
3
3

故答案為:
3
3
點(diǎn)評:本題考查二面角的平面角,考查余弦定理,正確作出二面角的平面角是關(guān)鍵.考查轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex+ae-x(a∈R,x∈R).
(1)討論函數(shù)g(x)=xf(x)的奇偶性;
(2)若g(x)是偶函數(shù),解不等式f(x2-2)≤f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩頂點(diǎn)A、B分別是雙曲線2x2-2y2=1的左、右焦點(diǎn),且sinC是sinA,sinB的等差中項(xiàng).
(1)求頂點(diǎn)C的軌跡T的方程;
(2)設(shè)P(-2,0),過點(diǎn)E(-
2
7
,0)作直線l交軌跡T于M、N兩點(diǎn),問∠MPN的大小是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的棱長為1,點(diǎn)M為D1C1上的點(diǎn),且D1M:MC1=3:1,則CM和平面AB1D1所成角的大小是θ,則sinθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=
b2
a
與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)交于P、Q兩點(diǎn),F(xiàn)是C的右焦點(diǎn),若|PQ|=2|FQ|,則C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前m項(xiàng)為bn=
第n天的利潤
前n天投入的資金總和
(b3=
a3
38+a1+a2
.),若對任意正整數(shù)b1,b2,有n(其中bn為常數(shù),n=1且b1=
1
38
),則稱數(shù)列n=2是以m為周期,以q為周期公比的似周期性等比數(shù)列.已知似周期性等比數(shù)列{bn}的前7項(xiàng)為1,1,1,1,1,1,2,周期為7,周期公比為3,則數(shù)列{bn}前7k+1項(xiàng)的和等于
 
.(k為正整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)對定義域的每一個(gè)值x1,在其定義域內(nèi)都存在唯一的x2,使f(x1)f(x2)=1成立,則稱該函數(shù)為“依賴函數(shù)”.給出以下命題:
①y=
1
x2
是“依賴函數(shù)”;
②y=
2
+sinx,x∈[-
π
2
,
π
2
]
是“依賴函數(shù)”;
③y=2x是“依賴函數(shù)”;④y=lnx是“依賴函數(shù)”;
⑤y=f(x),y=g(x)都是“依賴函數(shù)”,且定義域相同,則y=f(x).g(x)是“依賴函數(shù)”.
其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的方程為:
x2
64
+
y2
100
=1,上、下焦點(diǎn)分別為F1、F2;若CD為過左焦點(diǎn)F1的弦,則△F2CD的周長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c是空間兩兩垂直且長度相等的基底,
m
=a+b,
n
=b-c,則
m
,
n
的夾角為
 

查看答案和解析>>

同步練習(xí)冊答案