【題目】設(shè)拋物線(xiàn)C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn);
(1)若∠BFD=90°,△ABD的面積為 ,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線(xiàn)m上,直線(xiàn)n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.

【答案】
(1)解:由對(duì)稱(chēng)性知:△BFD是等腰直角△,斜邊|BD|=2p

點(diǎn)A到準(zhǔn)線(xiàn)l的距離 ,

∵△ABD的面積SABD=

= ,

解得p=2,所以F坐標(biāo)為(0,1),

∴圓F的方程為x2+(y﹣1)2=8


(2)解:由題設(shè) ,則 ,

∵A,B,F(xiàn)三點(diǎn)在同一直線(xiàn)m上,

又AB為圓F的直徑,故A,B關(guān)于點(diǎn)F對(duì)稱(chēng).

由點(diǎn)A,B關(guān)于點(diǎn)F對(duì)稱(chēng)得:

得: ,直線(xiàn) , 切點(diǎn)

直線(xiàn)

坐標(biāo)原點(diǎn)到m,n距離的比值為


【解析】(1)由對(duì)稱(chēng)性知:△BFD是等腰直角△,斜邊|BD|=2p點(diǎn)A到準(zhǔn)線(xiàn)l的距離 ,由△ABD的面積SABD= ,知 = ,由此能求出圓F的方程.(2)由對(duì)稱(chēng)性設(shè) ,則 點(diǎn)A,B關(guān)于點(diǎn)F對(duì)稱(chēng)得: ,得: ,由此能求出坐標(biāo)原點(diǎn)到m,n距離的比值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市為了解顧客的購(gòu)物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購(gòu)物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

一次性購(gòu)物量

1至4件

5 至8件

9至12件

13至16件

17件及以上

顧客數(shù)(人)

x

30

25

y

10

結(jié)算時(shí)間(分鐘/人)

1

1.5

2

2.5

3

已知這100位顧客中的一次購(gòu)物量超過(guò)8件的顧客占55%.
(1)確定x,y的值,并求顧客一次購(gòu)物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望;
(2)若某顧客到達(dá)收銀臺(tái)時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過(guò)2.5分鐘的概率.(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)頂點(diǎn)為,且它的離心率與雙曲線(xiàn)的離心率互為倒數(shù).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)A且斜率為k的直線(xiàn)l與橢圓相交于A,B兩點(diǎn),點(diǎn)M在橢圓上,且滿(mǎn)求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年是中華人民共和國(guó)成立70周年,某校黨支部舉辦了一場(chǎng)“我和我的祖國(guó)”知識(shí)競(jìng)賽,滿(mǎn)分100分,回收40份答卷,成績(jī)均落在區(qū)間內(nèi),將成績(jī)繪制成如下的頻率分布直方圖.

1)估計(jì)知識(shí)競(jìng)賽成績(jī)的中位數(shù)和平均數(shù);

2)從,分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取5份答卷,再?gòu)膶?duì)應(yīng)的黨員中選出3位黨員參加縣級(jí)交流會(huì),求選出的3位黨員中有2位成績(jī)來(lái)自于分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F為拋物線(xiàn)C:y2=4x的焦點(diǎn),過(guò)點(diǎn)P(﹣1,0)的直線(xiàn)l交拋物線(xiàn)C于兩點(diǎn)A,B,點(diǎn)Q為線(xiàn)段AB的中點(diǎn),若|FQ|=2,則直線(xiàn)l的斜率等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 的左右頂點(diǎn)分別為A,B,點(diǎn)P在橢圓上且異于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若直線(xiàn)AP與BP的斜率之積為 ,求橢圓的離心率;
(2)若|AP|=|OA|,證明直線(xiàn)OP的斜率k滿(mǎn)足|k|>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)在2018年11月5日—10日在上海國(guó)家會(huì)展中心舉辦。會(huì)議期間,某公司欲采購(gòu)東南亞某水果種植基地的水果,公司劉總經(jīng)理與該種植基地的負(fù)責(zé)人陳老板商定一次性采購(gòu)一種水果的采購(gòu)價(jià)(元/噸)與采購(gòu)量(噸)之間的函數(shù)關(guān)系的圖象如圖中的折線(xiàn)所示(不包含端點(diǎn),但包含端點(diǎn)).

(Ⅰ)求之間的函數(shù)關(guān)系式;

(Ⅱ)已知該水果種植基地種植該水果的成本是2800元/噸,那么劉總經(jīng)理的采購(gòu)量為多少時(shí),該水果基地在這次買(mǎi)賣(mài)中所獲得利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面 .

(Ⅰ)求證: 平面;

(Ⅱ)點(diǎn)在線(xiàn)段上運(yùn)動(dòng),設(shè)平面與平面所成銳二面角為,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:

①函數(shù)fx=2a2x-1-1的圖象過(guò)定點(diǎn)(-1);

②已知函數(shù)fx)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),fx=xx+1),若fa=-2則實(shí)數(shù)a=-12

③若loga1,則a的取值范圍是(,1);

④若對(duì)于任意xRfx=f4-x)成立,則fx)圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng);

⑤對(duì)于函數(shù)fx=lnx,其定義域內(nèi)任意x1x2都滿(mǎn)足f

其中所有正確命題的序號(hào)是______

查看答案和解析>>

同步練習(xí)冊(cè)答案