【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面, .
(Ⅰ)求證: 平面;
(Ⅱ)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成銳二面角為,試求的最小值.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:
(1)利用題意證得. ,結(jié)合線面垂直的判斷定理可得平面.
(2)建立空間直角坐標(biāo)系,結(jié)合題意可得 .結(jié)合,可得最大值, 的最小值為.
試題解析:
(1)證明:在梯形中,
, , ,
, .
, .
平面平面,平面平面, 平面, ,
平面, ,又, 平面.
(2)解:由(1)可建立分別以直線, , 為軸, 軸, 軸的空間直角坐標(biāo)系.如圖所示.令(),則, , , ,
, .
設(shè)為平面的一個(gè)法向量,由得
取,得, 是平面的一個(gè)法向量,
.
, 當(dāng)時(shí), 有最大值, 的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐ABC﹣A1B1C1中,底面ABC是邊長(zhǎng)為2的正三角形,側(cè)棱AA1⊥底面ABC,AA1= ,P、Q分別是AB、AC上的點(diǎn),且PQ∥BC.
(1)若平面A1PQ與平面A1B1C1相交于直線l,求證:l∥B1C1;
(2)當(dāng)平面A1PQ⊥平面PQC1B1時(shí),確定點(diǎn)P的位置并說(shuō)明理由.S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:
①已知a,b,m都是正數(shù),并且a<b,則 > ;
②在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若∠A=60°,a=7,b=8,則三角形有一解;
③若函數(shù)f(x)= ,則f( )+f( )+f( )+…+f( )=5;
④在等比數(shù)列{an}中,a1+a2+…+an= (其中n∈N* , q為公比);
⑤如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)M,N分別是CD,CC1的中點(diǎn),則異面直線A1M與DN所成角的大小是90°.
其中真命題有(寫出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系 中,過(guò)橢圓 右焦點(diǎn)的直線交于兩點(diǎn) , 為的中點(diǎn),且 的斜率為 .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)點(diǎn)的直線(不與坐標(biāo)軸垂直)與橢圓交于 兩點(diǎn),若在線段上存在點(diǎn),
使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一扇形的周長(zhǎng)為20cm,當(dāng)扇形的圓心角α等于多少時(shí),這個(gè)扇形的面積最大?最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D是直角△ABC斜邊BC上一點(diǎn),AC= DC.
(Ⅰ)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD= ,求DC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱柱ABC-A1B1C1中,AA1B1B為正方形,BB1C1C為菱形,B1CAC1
(Ⅰ)求證:平面AA1B1B面BB1C1C;
(Ⅱ)若D是CC1中點(diǎn),ADB是二面角A-CC1-B的平面角,求直線AC1與平面ABC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本市某玩具生產(chǎn)公司根據(jù)市場(chǎng)調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每天生產(chǎn), , 三種玩具共100個(gè),且種玩具至少生產(chǎn)20個(gè),每天生產(chǎn)時(shí)間不超過(guò)10小時(shí),已知生產(chǎn)這些玩具每個(gè)所需工時(shí)(分鐘)和所獲利潤(rùn)如表:
玩具名稱 | |||
工時(shí)(分鐘) | 5 | 7 | 4 |
利潤(rùn)(元) | 5 | 6 | 3 |
(Ⅰ)用每天生產(chǎn)種玩具個(gè)數(shù)與種玩具表示每天的利潤(rùn)(元);
(Ⅱ)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設(shè)與相交于點(diǎn), .
(1)證明:平面平面;
(2)若與平面所成角為60°,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com