【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρsin2θ+4sinθ﹣ρ=0,直線l: (t為參數(shù))過曲線C的焦點(diǎn),且與曲線C交于M,N兩點(diǎn).
(1)寫出曲線C及直線l直角坐標(biāo)方程;
(2)求|MN|.
【答案】
(1)解:曲線C的極坐標(biāo)方程為ρsin2θ+4sinθ﹣ρ=0,
可得ρ2sin2θ+4ρsinθ﹣ρ2=0,可得直角坐標(biāo)方程:y2+4y﹣(x2+y2)=0,即x2=4y.
直線l: (t為參數(shù))消去參數(shù)t可得普通方程:y﹣3=(x﹣2)tanα.
由題意可知:直線經(jīng)過點(diǎn)(0,1),∴﹣2=﹣2tanα,可得tanα=1.
∴直線l的方程為:y﹣3=x﹣2,化為y=x+1
(2)解:聯(lián)立 ,化為:x2﹣4x﹣4=0,
∴|MN|= = =8
【解析】(1)曲線C的極坐標(biāo)方程為ρsin2θ+4sinθ﹣ρ=0,可得ρ2sin2θ+4ρsinθ﹣ρ2=0,利用互化公式可得直角坐標(biāo)方程.由直線l的參數(shù)方程,消去參數(shù)t可得普通方程,把拋物線焦點(diǎn)(0,1)代入即可得出.(2)直線方程與拋物線方程聯(lián)立化為:x2﹣4x﹣4=0,利用根與系數(shù)的關(guān)系及其|MN|= 即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查高一新生中女生的體重情況,校衛(wèi)生室隨機(jī)選20名女生作為樣本,測(cè)量她們的體重(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間, , , 進(jìn)行分組,得到頻率分布直方圖如圖所示,已知樣本中體重在區(qū)間上的女生數(shù)與體重在區(qū)間上的女生數(shù)之比為.
(1)求的值;
(2)從樣本中體重在區(qū)間上的女生中隨機(jī)抽取兩人,求體重在區(qū)間上的女生至少有一人被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是ρ=1,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 為參數(shù)).
(1)寫出直線l與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過伸縮變換 得到曲線C′,設(shè)曲線C′上任一點(diǎn)為M(x,y),求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)為了了解顧客的購(gòu)物信息,隨機(jī)在商場(chǎng)收集了位顧客購(gòu)物的相關(guān)數(shù)據(jù)如下表:
一次購(gòu)物款(單位:元) | |||||
顧客人數(shù) |
統(tǒng)計(jì)結(jié)果顯示位顧客中購(gòu)物款不低于元的顧客占,該商場(chǎng)每日大約有名顧客,為了增加商場(chǎng)銷售額度,對(duì)一次購(gòu)物不低于元的顧客發(fā)放紀(jì)念品.
(Ⅰ)試確定, 的值,并估計(jì)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;
(Ⅱ)現(xiàn)有人前去該商場(chǎng)購(gòu)物,求獲得紀(jì)念品的數(shù)量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知過點(diǎn)的直線的參數(shù)方程是(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程式為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】x、y滿足約束條件 ,若z=y﹣ax取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)a的值為( )
A. 或﹣1
B.2或
C.2或1
D.2或﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各棱長(zhǎng)都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動(dòng)點(diǎn)(含邊界),且GE∥平面ABD,若 =1,則| |= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記max{m,n}= ,設(shè)F(x,y)=max{|x2+2y+2|,|y2﹣2x+2|},其中x,y∈R,則F(x,y)的最小值是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定函數(shù)① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com