【題目】某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理化學(xué)等其他互不相同的七個學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(每位同學(xué)被選到的可能性相同).

(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;

(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量的分布列.

【答案】(1)(2)詳見解析

【解析】

(1)利用排列組合求出所有基本事件個數(shù)及選出的3名同學(xué)是來自互不相同學(xué)院的基本事件個數(shù),代入古典概型概率公式求出即可(2)隨機(jī)變量X的所有可能值為0,1,2,3,,列出隨機(jī)變量X的分布列即可.

(1)設(shè)“選出的3名同學(xué)是來自互不相同的學(xué)院”為事件,

(2)隨機(jī)變量的所有可能值為

的分布列為

X

0

1

2

3

P

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,判斷的單調(diào)性,并用定義證明.

2)若對任意,不等式恒成立,求的取值范圍;

3)討論零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線,傾斜角為,以為極點, 軸在平面直角坐標(biāo)系中,直線,曲線為參數(shù)),坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求的極坐標(biāo)方程;

(2)若曲線的極坐標(biāo)方程為,且曲線分別交于點兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)求函數(shù)的單調(diào)區(qū)間;

)若對定義域每的任意恒成立,求實數(shù)的取值范圍;

)證明:對于任意正整數(shù),不等式恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xoy中,已知直線的參數(shù)方程為為參數(shù), 以原點O為極點,以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(1)寫出直線的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;

(2)若直線與曲線C相交于A,B 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 為向國際化大都市目標(biāo)邁進(jìn),沈陽市今年新建三大類重點工程,它們分別是30項基礎(chǔ)設(shè)施類工程,20項民生類工程和10項產(chǎn)業(yè)建設(shè)類工程.現(xiàn)有來沈陽的3名工人相互獨立地從這60個項目中任選一個項目參與建設(shè).

)求這3人選擇的項目所屬類別互異的概率;

)將此3人中選擇的項目屬于基礎(chǔ)設(shè)施類工程或產(chǎn)業(yè)建設(shè)類工程的人數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.

(1)求拋物線方程;

(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為. 

(1)當(dāng)時,求曲線和曲線的交點的直角坐標(biāo);

(2)當(dāng)時,設(shè), 分別是曲線與曲線上動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, .

1)求證: ;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案