【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線,傾斜角為,以為極點, 軸在平面直角坐標系中,直線,曲線為參數(shù)),坐標原點為極點,以軸正半軸為極軸,建立極坐標系.

(1)求的極坐標方程;

(2)若曲線的極坐標方程為,且曲線分別交于點兩點,求的最大值.

【答案】(1) (2) ,

【解析】試題分析:(1)x=ρcosθ,y=ρsinθ,能求出曲線C1的極坐標方程;曲線C2消去參數(shù)φ得曲線C2的普通方程為x2+(y﹣1)2=1,由x=ρcosθ,y=ρsinθ,能求出C2的極坐標方程.

2)設(shè)Aρ1,α),Bρ2,α),, ,由此能求出的最大值.

試題解析:

(1)∵ ,

,∴

,

,

,∴

(2)曲線,

設(shè) ,

,

, .

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù). 為實數(shù),且,記由所有組成的數(shù)集為.

1)已知,求

2)對任意的,恒成立,求的取值范圍;

3)若,,判斷數(shù)集中是否存在最大的項?若存在,求出最大項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠擬用集裝箱托運甲、乙兩種貨物,集裝箱的體積、重量、可獲利潤和托運能力等限制數(shù)據(jù)列在表中,如何設(shè)計甲、乙兩種貨物應(yīng)各托運的箱數(shù)可以獲得最大利潤,最大利潤是多少?

貨物

體積

重量

利潤百元

5

2

20

4

5

10

托運限制

24

13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計這次環(huán)保知識競賽成績的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)

(3) 從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在同一分數(shù)段的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某儀器經(jīng)過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進行調(diào)試,經(jīng)調(diào)試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項費用如表:

項目

生產(chǎn)成本

檢驗費/次

調(diào)試費

出廠價

金額(元)

1000

100

200

3000

(Ⅰ)求每臺儀器能出廠的概率;

(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價生產(chǎn)成本檢驗費調(diào)試費);

(Ⅲ)假設(shè)每臺儀器是否合格相互獨立,記為生產(chǎn)兩臺儀器所獲得的利潤,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,且滿足.

(1)判斷函數(shù)上的單調(diào)性,并用定義證明;

(2)設(shè)函數(shù),在區(qū)間上的最大值;

(3)若存在實數(shù)m,使得關(guān)于x的方程恰有4個不同的正根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標準采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均在35微克/立方米以下空氣質(zhì)量為一級,在35微克/立方米75微克/立方米之間空氣質(zhì)量為二級,在75微克/立方米以上空氣質(zhì)量為超標.北方某市環(huán)保局從2015年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如下圖所示(十位為莖,個位為葉).

(1)15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示其中空氣質(zhì)量達到一級的天數(shù),求的分布列;

(2)以這15天的PM2.5日均值來估計一年的空氣質(zhì)量情況,則一年(按360天計算)中大約有多少天的空氣質(zhì)量達到一級.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理化學(xué)等其他互不相同的七個學(xué)院,現(xiàn)從這10名同學(xué)中隨機選取3名同學(xué),到希望小學(xué)進行支教活動(每位同學(xué)被選到的可能性相同).

(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;

(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個極值,其中,求的最小值.

查看答案和解析>>

同步練習冊答案