【題目】已知函數(shù),.

1)當(dāng)為何值時(shí),軸為曲線的切線;

2)用表示中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).

【答案】1;(2)見解析.

【解析】

1)設(shè)切點(diǎn)坐標(biāo)為,然后根據(jù)可解得實(shí)數(shù)的值;

2)令,然后對(duì)實(shí)數(shù)進(jìn)行分類討論,結(jié)合的符號(hào)來確定函數(shù)的零點(diǎn)個(gè)數(shù).

1,,

設(shè)曲線軸相切于點(diǎn),則,

,解得.

所以,當(dāng)時(shí),軸為曲線的切線;

2)令,

,,由,得.

當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù).

,.

①當(dāng),即當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);

②當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);

③當(dāng),即當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn);

④當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);

⑤當(dāng),即當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn).

綜上所述,當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn);

當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);

當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)為自然對(duì)數(shù)的底數(shù)),時(shí),若方程有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)|2x4||x3|.

(1)解關(guān)于x的不等式f(x)<8;

(2)對(duì)于正實(shí)數(shù)ab,函數(shù)g(x)f(x)3a4b只有一個(gè)零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,動(dòng)直線與橢圓交于點(diǎn),與軸交于點(diǎn).為坐標(biāo)原點(diǎn),中點(diǎn).

1)若,求的面積;

2)若試探究是否存在常數(shù),使得是定值?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,,底面ABCD是邊長(zhǎng)為2的菱形,點(diǎn)E,F分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).

求證:(1)直線平面EFG

2)直線平面SDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解游客的情況,以便制定相應(yīng)的策略,在某月中隨機(jī)抽取甲、乙兩個(gè)景點(diǎn)各10天的游客數(shù),畫出莖葉圖如圖:

1)若景點(diǎn)甲中的數(shù)據(jù)的中位數(shù)是125,景點(diǎn)乙中的數(shù)據(jù)的平均數(shù)是124,求x,y的值;

2)若將圖中景點(diǎn)甲中的數(shù)據(jù)作為該景點(diǎn)較長(zhǎng)一段時(shí)期內(nèi)的樣本數(shù)據(jù).今從這段時(shí)期中任取4天,記其中游客數(shù)超過120人的天數(shù)為,求概率;

3)現(xiàn)從如圖所示的共20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點(diǎn)中各取1天),記其中游客數(shù)不低于115且不高于125人的天數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

設(shè)函數(shù)

(Ⅰ)若是函數(shù)的極值點(diǎn),1和的兩個(gè)不同零點(diǎn),且

,求的值;

(Ⅱ)若對(duì)任意, 都存在 為自然對(duì)數(shù)的底數(shù)),使得

成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形,,,,的中點(diǎn).

(Ⅰ)證明:∥平面;

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(mR)的導(dǎo)函數(shù)為

1)若函數(shù)存在極值,求m的取值范圍;

2)設(shè)函數(shù)(其中e為自然對(duì)數(shù)的底數(shù)),對(duì)任意mR,若關(guān)于x的不等式(0,)上恒成立,求正整數(shù)k的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案