【題目】如圖所示,在直三棱柱中, ,點(diǎn)分別是的中點(diǎn).

(1)求證: ∥平面;

(2)若,求證: .

【答案】(1)見解析(2)見解析

【解析】試題分析:(1)先根據(jù)平面幾何知識證明四邊形是平行四邊形,得.再根據(jù)線面平行判定定理得結(jié)論(2)先根據(jù)直三棱柱性質(zhì)得,再根據(jù)等腰三角形性質(zhì)得,由線面垂直判定定理得側(cè)面.即得.再由已知,證得平面,即得結(jié)論

試題解析:證明:(1)因為是直三棱柱,所以,且,

又點(diǎn)分別是的中點(diǎn),所以,且

所以四邊形是平行四邊形,從而

平面, 平面,所以∥面

(2)因為是直三棱柱,所以底面,而側(cè)面,

所以側(cè)面底面

,且的中點(diǎn),所以

則由側(cè)面底面,側(cè)面底面

,且底面,得側(cè)面

側(cè)面,所以

平面,且

所以平面

平面,所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是矩形,側(cè)棱底面, 分別是的中點(diǎn), .

(Ⅰ)求證: 平面

(Ⅱ)求證: 平面;

(Ⅲ)若 ,求三棱錐的體積..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中曲線的方程是點(diǎn)上的動點(diǎn),點(diǎn)滿足為極點(diǎn)),點(diǎn)的軌跡為曲線,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系已知直線的參數(shù)方程是,( 為參數(shù)).

(Ⅰ)求曲線直角坐標(biāo)方程與直線的普通方程

(Ⅱ)求點(diǎn)到直線的距離的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市初三畢業(yè)生參加中考要進(jìn)行體育測試,某實驗中學(xué)初三(8)班的一次體育測試成績的莖葉圖和頻率分布直方圖都受到不同程度的涂黑,但可見部分如圖,據(jù)此解答如下問題.

(Ⅰ)求全班人數(shù)及中位數(shù),并重新畫出頻率直方圖;

(Ⅱ)若要從分?jǐn)?shù)在之間的成績中任取兩個學(xué)生成績分析學(xué)生得分情況,在抽取的學(xué)生中,求至少有一個分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足,其中,且 為常數(shù).

(1)若是等差數(shù)列,且公差,求的值;

(2)若,且存在,使得對任意的都成立,求的最小值;

(3)若,且數(shù)列不是常數(shù)列,如果存在正整數(shù),使得對任意的均成立. 求所有滿足條件的數(shù)列的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)設(shè),討論的單調(diào)性;

2)若函數(shù)內(nèi)存在零點(diǎn),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A, B, C的對邊分別為a, b, c,.

求角C的大。

Ⅱ)設(shè)角A的平分線交BCD,且AD=,若b=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圖,在三棱柱中,平面平面,且均為正三角形.

(1)在上找一點(diǎn),使得平面,并說明理由.

(2)若的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆山西省太原十二中高三上學(xué)期1月月考】運(yùn)動員甲在最近比賽中所得分?jǐn)?shù)的莖葉圖如圖所示,由于疏忽,莖葉圖中的兩個數(shù)據(jù)上出行了污漬,導(dǎo)致這兩個數(shù)字無法辨認(rèn),但統(tǒng)計員記得除掉污漬處的數(shù)字不影響整體中位數(shù),且這六個數(shù)據(jù)的平均值為.

1)求污漬處的數(shù)字;

2)籃球運(yùn)動員乙在最近的比賽中所得分?jǐn)?shù)為.試分別以各自場比賽得分的平均數(shù)與方差來分析這兩名籃球運(yùn)動員的發(fā)揮水平.

查看答案和解析>>

同步練習(xí)冊答案