(2012•菏澤一模)已知定義在區(qū)間[-2,t](t>-2)上的函數(shù)f(x)=(x2-3x+3)ex
(Ⅰ)當t>1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)設m=f(-2),n=f(t).試證明:m<n;
(Ⅲ)設g(x)=f(x)+(x-2)ex,當x>1時試判斷方程g(x)=x根的個數(shù).
分析:(Ⅰ)求導函數(shù),由導數(shù)的正負,可確定函數(shù)的單調(diào)性;
(Ⅱ)f(x)在x=1處取得極小值f(1)=e,根據(jù)f(-2)=13e-2<e,可得f(x)僅在x=-2處取得[-2,t]上的最小值f(-2),從而當t>-2時,f(-2)<f(t),故問題得證;
(Ⅲ)設g(x)=f(x)+(x-2)ex=(x-1)2ex,當x>1時判斷方程g(x)=x根的個數(shù)等價于(x-1)2ex=x當x>1時根的個數(shù),構造函數(shù),利用導數(shù)知識求解即可.
解答:(Ⅰ)解:因為f′(x)=(x2-3x+3)•ex+(2x-3)•ex=x(x-1)•ex.        
當t>1時,由f′(x)>0,可得t>x>1或-2<x<0;由f′(x)<0,可得0<x<1
所以f(x)在(-2,0),(1,t)上遞增,在(0,1)上遞減.            
(Ⅱ)證明:由f′(x)>0,可得x>1或x<0;由f′(x)<0,可得0<x<1
所以f(x)在(-∞,0),(1,+∞)上遞增,在(0,1)上遞減,所以f(x)在x=1處取得極小值f(1)=e.
又∵f(-2)=13e-2<e,所以f(x)僅在x=-2處取得[-2,t]上的最小值f(-2)
從而當t>-2時,f(-2)<f(t),即m<n.
(Ⅲ)解:設g(x)=f(x)+(x-2)ex=(x-1)2ex,當x>1時判斷方程g(x)=x根的個數(shù)等價于(x-1)2ex=x當x>1時根的個數(shù)
設h(x)=(x-1)2ex-x(x>1),則h′(x)=(x2-1)ex-1,
再設k(x)(x2-1)ex-1(x>1),則k′(x)=(x2+2x-1)ex,
當x>1時,k′(x)>1,即k(x)在(1,+∞)單調(diào)遞增
∵k(1)=-1<0,k(2)=3e2-1>0
∴在(1,2)上存在唯一x0,使k(x0)=0,即存在唯一x0∈(1,2),使h′(x0)=0
函數(shù)h(x)在(1,x0)上,h′(x0)<0,函數(shù)單調(diào)減,在(x0,+∞)上,h′(x0)>0,函數(shù)單調(diào)增,
∴h(x)min=h(x0)<h(1)=-1<0
∵h(2)=e2-2>0
y=h(x)的大致圖象如圖,
由此可得y=h(x)在(1,+∞)上只有一個零點,即g(x)=x,x>1時只有1個實根.
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查函數(shù)的極值與最值,考查函數(shù)的零點,構造函數(shù),確定函數(shù)的單調(diào)性是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)命題“?x∈[1,2],x2-a≤0”為真命題的一個充分不必要條件是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)集合M={x|
x
x-1
>0},集合N={y|y=x 
1
2
},則M∩N=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)將函數(shù)y=cos2x的圖象向右平移
π
4
個單位,得到函數(shù)y=f(x)•sinx的圖象,則f(x)的表達式可以是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)復數(shù)
1+2i
2-i
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)如圖,正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D為C1B的中點,P為AB邊上的動點.
(Ⅰ)當點P為AB的中點時,證明DP∥平面ACC1A1;
(Ⅱ)若AP=3PB,求三棱錐B-CDP的體積.

查看答案和解析>>

同步練習冊答案