【題目】若、是兩個相交平面,則在下列命題中,真命題的序號為( )

若直線,則在平面內(nèi)一定不存在與直線平行的直線.

若直線,則在平面內(nèi)一定存在無數(shù)條直線與直線垂直.

若直線,則在平面內(nèi)不一定存在與直線垂直的直線.

若直線,則在平面內(nèi)一定存在與直線垂直的直線.

A. ①③ B. ②③ C. ②④ D. ①④

【答案】C

【解析】試題分析:對于,若直線,如果, 互相垂直,則在平面內(nèi),存在與直線平行的直線,所以是錯誤的;對于,若直線,則直線垂直于平面內(nèi)的所有直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直,所以正確;對于,若直線,則在平面內(nèi),一定存在與直線垂直的直線,所以是錯誤的;對于,若直線,則在平面內(nèi),一定存在與直線垂直的直線,所以是正確的.故應(yīng)選

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長為的正方形,平面平面, ,

(Ⅰ)求證: 平面;

)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】水培植物需要一種植物專用營養(yǎng)液,已知每投放個單位的營養(yǎng)液,它在水中釋放的濃度 (/升)隨著時間 ()變化的函數(shù)關(guān)系式近似為,其中若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中營養(yǎng)液的濃度不低于4(/)時,它才能有效.

1若只投放一次2個單位的營養(yǎng)液,則有效時間最多可能達(dá)到幾天?

2若先投放2個單位的營養(yǎng)液,3天后再投放個單位的營養(yǎng)液,要使接下來的2天中營養(yǎng)液能夠持續(xù)有效,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列推理中屬于歸納推理且結(jié)論正確的是(
A.由an=2n﹣1,求出S1=12 , S2=22 , S3=32 , …,推斷:數(shù)列{an}的前n項和Sn=n2
B.由f(x)=xcosx滿足f(﹣x)=﹣f(x)對?x∈R都成立,推斷:f(x)=xcosx為奇函數(shù)
C.由圓x2+y2=r2的面積S=πr2 , 推斷:橢圓 =1的面積S=πab
D.由(1+1)2>21 , (2+1)2>22 , (3+1)2>23 , …,推斷:對一切n∈N* , (n+1)2>2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,則導(dǎo)函數(shù)f′(x)是(
A.僅有最小值的奇函數(shù)
B.既有最大值,又有最小值的偶函數(shù)
C.僅有最大值的偶函數(shù)
D.既有最大值,又有最小值的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如表為“五點法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時的五個關(guān)鍵點的坐標(biāo)(其中A>0,ω>0,|φ|<π)

x

f(x)

0

2

0

﹣2

0

(Ⅰ)請寫出函數(shù)f(x)的最小正周期和解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)的導(dǎo)函數(shù)為

若直線與曲線恒相切于同一定點,求的方程;

⑵ 若,求證:當(dāng)時, 恒成立;

⑶ 若當(dāng)時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中, ,前項和滿足).

⑴ 求數(shù)列的通項公式;

,求數(shù)列的前項和;

⑶ 是否存在整數(shù)對(其中 )滿足?若存在,求出所有的滿足題意的整數(shù)對;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)y=sin(x﹣ )的圖象向左平移 個單位長度,再將圖象上所有點的橫坐標(biāo)縮短為原來的 倍(縱坐標(biāo)不變)得到函數(shù)f(x)的圖象. (Ⅰ)寫出函數(shù)f(x)的解析式;
(Ⅱ)若x∈[0, ]時,關(guān)于x的方程f(x)﹣m=0有兩個不等的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案