由“若a>b,則a+c>b+c”推理到“若a>b,則ac>bc”是( 。
A、歸納推理B、類比推理
C、演繹推理D、不是推理
考點:類比推理
專題:推理和證明
分析:根據(jù)歸納推理是由部分到整體的推理,演繹推理是由一般到特殊的推理,類比推理是由特殊到特殊的推理;由“若a>b,則a+c>b+c”推理到“若a>b,則ac>bc”是由特殊到特殊的推理,所以它是類比推理,據(jù)此解答即可.
解答: 解:根據(jù)歸納推理是由部分到整體的推理,
演繹推理是由一般到特殊的推理,
類比推理是由特殊到特殊的推理,
由“若a>b,則a+c>b+c”推理到“若a>b,則ac>bc”是由特殊到特殊的推理,
所以它是類比推理.
故選:B.
點評:本題主要考查了歸納推理、類比推理和演繹推理的判斷,屬于基礎題,解答此題的關鍵是熟練掌握歸納推理、類比推理和演繹推理的定義和區(qū)別.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個總體為60個個體的編號為0、1、2、…、59,現(xiàn)在要從中抽取一個容量為10的樣本,請根據(jù)編號按被6除余3的方法,取足樣本,則按順序抽取的第5個樣本的編號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m>1,當實數(shù)x,y滿足不等式組
y≥x
y≤2x
x+y≤1
時,目標函數(shù)z=x+my的最大值等于2,則m的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合U=(0,1,2,3,4,5,6},M={1,3,5},N={2,4,6},則(∁UM)∪(∁UN)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系.已知圓的極坐標方程為ρ=8sinθ,則該圓的圓心到直線
x=t
y=2-t
(t為參數(shù))的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=f(3-x),(x-2)f′(x)<0,設a=f(cos2π),b=f(
1
2
),c=f(4+sin2α),則a,b,c的大小關系為( 。
A、a<b<c
B、c<a<b
C、b<c<a
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若|cosθ|=cosθ,|tanθ|=-tanθ,則
θ
2
的終邊在( 。
A、第一、三象限
B、第二、四象限
C、第一、三象限或x軸上
D、第二、四象限或x軸上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知經過橢圓
x2
25
+
y2
16
=1的左焦點F1的直線交橢圓于A、B兩點,F(xiàn)2是橢圓的右焦點,則△AB F2的周長(  )
A、12B、16C、20D、25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|y=lg(x-1)},B={y|y=-x2+4,x∈R},則A∩B=(  )
A、(1,+∞)
B、(1,4]
C、(1,4)
D、(-∞,4]

查看答案和解析>>

同步練習冊答案