【題目】如圖,在正方體中, 分別是的中點(diǎn).

1)證明:平面平面;

2上是否存在點(diǎn),使平面?請證明你的結(jié)論.

【答案】(1)見解析(2)在棱上取點(diǎn),使得,則平面.

【解析】試題分析:(1)證明平面平面,可先證明平面,可先證明, . (2) 延長, 交于,連,得,四邊形為平行四邊形,所以,即.即證得平面

試題解析:

(1)證明:因?yàn)?/span>分別是中點(diǎn),結(jié)合正方體知識易得,

所以

因?yàn)?/span>,

所以,即

又由正方體知識可知, 平面 平面ABCD,

所以,即

, 平面, 平面,

于是平面

因?yàn)?/span>平面,

故平面平面

(2)解:在棱上取點(diǎn),使得,則平面

證明如下:延長, 交于,連

因?yàn)?/span>, 中點(diǎn),所以中點(diǎn).

因?yàn)?/span>,所以,且

因?yàn)?/span> 中點(diǎn),所以,

即四邊形為平行四邊形,

所以,即

平面 平面

所以平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:

廣告費(fèi)用x(萬元)

4

2

3

5

銷售額y(萬元)

49

26

39

54

根據(jù)上表可得回歸方程 = x+ 中的 為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時銷售額為(
A.63.6萬元
B.67.7萬元
C.65.5萬元
D.72.0萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,直線: ,圓:

(Ⅰ)若,請判斷直線與圓的位置關(guān)系;

求直線傾斜角的取值范圍;

(Ⅲ)直線能否將圓分割成弧長的比值為的兩段圓。繛槭裁?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程

焦點(diǎn)在軸上,焦距是,離心率;

一個焦點(diǎn)為的等軸雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α∈(0, ),β∈(0,π),且tan(α﹣β)= ,tanβ=﹣
(1)求tanα;
(2)求2α﹣β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線為參數(shù)),將上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的倍后得到曲線.以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.

(1)試寫出曲線的極坐標(biāo)方程與曲線的參數(shù)方程;

(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最小,并求此最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為的棱形,且分別是的中點(diǎn).

(1)證明:平面;

(2)若二面角的大小為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分為14分)已知定義域?yàn)?/span>R的函數(shù)是奇函數(shù).

1)求a,b的值;

2)若對任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn)、,并且直線平分圓.

)求圓的方程;

)若過點(diǎn),且斜率為的直線與圓有兩個不同的交點(diǎn).

)求實(shí)數(shù)的取值范圍;

)若,求的值.

查看答案和解析>>

同步練習(xí)冊答案