已知點(diǎn)O(0,0),A(1,2),B(3,2),以線段AB為直徑作圓C,則直線l:x+y-3=0與圓C的位置關(guān)系是(  )
A、相交且過圓心B、相交但不過圓心
C、相切D、相離
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:根據(jù)題意求出圓C圓心坐標(biāo)及半徑,利用圓心到直線的距離與半徑之間的關(guān)系即可判斷圓與直線的位置關(guān)系.
解答: 解:由題意得,
圓心坐標(biāo)為(
1+3
2
,
2+2
2
),即C(2,2).
半徑r=
|AB|
2
=1.
∴圓心C(2,2)到直線l:x+y-3=0的距離
d=
|2+2-3|
2
=
2
2

∴d<r.
∴直線與C相交.
又圓心C(2,2)不在直線l:x+y-3=0上.
∴直線與圓相交但不過圓心.
故選:B.
點(diǎn)評(píng):本題考查圓的標(biāo)準(zhǔn)方程,直線與圓的位置關(guān)系等知識(shí).屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC中,PA、PB、PC兩兩垂直且PA=2
2
,PB=4,PC=2
3
,如果三棱錐的四個(gè)頂點(diǎn)都在同一球面上,那么這個(gè)球的體積等于( 。
A、36πB、72π
C、144πD、288π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

身高從矮到高的甲、乙、丙、丁、戊5人排成高矮相間的一個(gè)隊(duì)形,則甲丁不相鄰的不同的排法共有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有n粒球(n≥2,n∈N*),任意將它們分成兩堆,求出兩堆球的乘積,再將其中一堆任意分成兩堆,求這出兩堆球的乘積,如此下去,每次任意將其中一堆分成兩堆,求這出兩堆球的乘積,直到每堆球都不能再分為止,記所有乘積之和為Sn.例如對(duì)于4粒球有如下兩種分解:
(4)→(1,3)→(1,1,2)→(1,1,1,1),此時(shí)S4=1×3+1×2+1×1=6;
(4)→(2,2)→(1,1,2)→(1,1,1,1),此時(shí)S4=2×2+1×1+1×1=6.
于是發(fā)現(xiàn)S4為定值,請(qǐng)你研究Sn的規(guī)律,歸納Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
e1
,
e2
是兩個(gè)單位向量,若向量
a
=
e1
-2
e2
,
b
=3
e1
+4
e2
,且
a
b
=-6,則向量
e1
e2
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m是平面α的一條斜線,點(diǎn)A∈α,l為過點(diǎn)A的一條動(dòng)直線,那么下列情形不可能出現(xiàn)的是( 。
A、l∥m,l⊥α
B、l⊥m,l⊥α
C、l⊥m,l∥α
D、l∥m,l∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5},集合A={1,3,4},集合B={2,4},則(∁UA)∪B為( 。
A、{2,4,5}
B、{1,3,4}
C、{1,2,4}
D、{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l∥平面α,直線m?平面α,則l與m的位置關(guān)系為( 。
A、平行B、相交
C、異面D、平行或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+(x-a)2-
a
2
,a∈R.
(Ⅰ)若函數(shù)f(x)在[
1
2
,2]
上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)求函數(shù)f(x)的極值點(diǎn).
(Ⅲ)設(shè)x=m為函數(shù)f(x)的極小值點(diǎn),f(x)的圖象與x軸交于A(x1,0),B(x2,0)(x1<x2)兩點(diǎn),且0<x1<x2<m,AB中點(diǎn)為C(x0,0),求證:f′(x0)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案