已知橢圓的離心率,左、右焦點分別為,定點P,點在線段的中垂線上.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于M、N兩點,直線的傾斜角分別為,求證:直線過定點,并求該定點的坐標(biāo).
⑴由橢圓C的離心率,其中,
橢圓C的左、右焦點分別為又點在線段的中垂線上
,∴解得c=1,a2=2,b2=1,
∴橢圓的方程為 .   
⑵由題意,知直線MN存在斜率,設(shè)其方程為y=kx+m
消去y,得(+4kmx+=0.
設(shè)M(),N(),則,
,  
由已知α+β=π,得,即
化簡,得
。整理得m=-2k.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以原點O和A(5,2)為兩個頂點作等腰直角三角形OAB,∠B=90°,求點B和的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點.若
AB
=
a
,
AD
=
b
,
AA1
=
c
,則向量
BM
a
,
b
,
c
,可表示為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,已知AB、BC、CA的長分別為c、a、b,利用向量方法證明:b2=a2+c2-2accosB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于曲線有以下判斷:(1)它表示圓;(2)它關(guān)于原點對稱;(3)它關(guān)于直線對稱;(4).其中正確的有________(填上相應(yīng)的序號即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)過點的直線分別與正半軸, 軸正半軸交于兩點,為坐標(biāo)原點,則三角形面積最小時直線方程為                   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦點分別為,長軸長為6,設(shè)直線 交橢圓于A、B兩點。(Ⅰ)求線段AB的中點坐標(biāo);(Ⅱ)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)P為橢圓上一點,為左右焦點,若
(1)   求△的面積;
(2)   求P點的坐標(biāo).(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,,過曲線上一點的切線,與曲線也相切于點,記點的橫坐標(biāo)為。

(1)用表示切線的方程;
(2)用表示的值和點的坐標(biāo);
(3)當(dāng)實數(shù)取何值時,?
并求此時所在直線的方程。

查看答案和解析>>

同步練習(xí)冊答案