精英家教網 > 高中數學 > 題目詳情

【題目】是等差數列,是各項都為正數的等比數列,且.

(1)求,的通項公式;

(2)設,若,成等差數列(、為正整數且),求的值;

(3)設為數列的前項和,是否存在實數,使得對一切均成立?若存在,求出的最大值;若不存在,說明理由.

【答案】(1),;(2,;(3)存在,最大值為,理由見解析

【解析】

(1)由題可設數列的公差為,的公比為,可得,即可求出,從而可求得的通項公式;

(2)由可求得的表達式,結合,成等差數列,可得,進而可求得的等式關系,結合的取值范圍,可求出答案;

(3)先求出的表達式,代入不等式中,可得對一切成立,即求的最小值即可.

(1)依題意,設數列的公差為,的公比為,

,解得,,.

(2)

依題意,,則為正整數且),

化簡得:,又,,解得,

,

因為為正整數,,所以,

,此時.

(3)依題意:,

對一切成立,

對一切成立,

即求的最小值,

,取得最小值,

,

,

解得,.

的最小值為.

所以存在最大值為滿足題意.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某班有50名學生,男女人數不相等。隨機詢問了該班5名男生和5名女生的某次數學測試成績,用莖葉圖記錄如下圖所示,則下列說法一定正確的是( )

A. 這5名男生成績的標準差大于這5名女生成績的標準差。

B. 這5名男生成績的中位數大于這5名女生成績的中位數。

C. 該班男生成績的平均數大于該班女生成績的平均數。

D. 這種抽樣方法是一種分層抽樣。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且時,總有成立.

a的值;

判斷并證明函數的單調性;

上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[2018·江西聯考]交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯系,發(fā)生交通事故的次數越多,費率也就越高,具體浮動情況如表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責任道路交通事故

下浮10%

上兩個年度未發(fā)生有責任道路交通事故

下浮20%

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了80輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數量

20

10

10

20

15

5

以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定,.某同學家里有一輛該品牌車且車齡剛滿三年,記X為該品牌車在第四年續(xù)保時的費用,求X的分布列與數學期望值;(數學期望值保留到個位數字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損4000元,一輛非事故車盈利8000元:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數(其中),且曲線在點處的切線垂直于直線.

(1)求的值及此時的切線方程;

(2)求函數的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體中,,分別是棱,的中點,為棱上一點,平面.

(1)證明:中點;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一只紅鈴蟲的產卵數y和溫度x有關,現收集了6組觀測數據于下表中,通過散點圖可以看出樣本點分布在一條指數型函數y=的圖象的周圍.

(1)試求出y關于x的上述指數型的回歸曲線方程(結果保留兩位小數);

(2)試用(1)中的回歸曲線方程求相應于點(24,17)的殘差.(結果保留兩位小數)

溫度x(°C)

20

22

24

26

28

30

產卵數y()

6

9

17

25

44

88

z=lny

1.79

2.20

2.83

3.22

3.78

4.48

幾點說明:

①結果中的都應按題目要求保留兩位小數.但在求時請將的值多保留一位即用保留三位小數的結果代入.

②計算過程中可能會用到下面的公式:回歸直線方程的斜率==,截距.

③下面的參考數據可以直接引用:=25,=31.5,≈3.05,=5248,≈476.08,,ln18.17≈2.90.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓為左右焦點,為短軸端點,長軸長為4,焦距為,且,的面積為.

(Ⅰ)求橢圓的方程

(Ⅱ)設動直線橢圓有且僅有一個公共點,且與直線相交于點.試探究:在坐標平面內是否存在定點,使得以為直徑的圓恒過點?若存在求出點的坐標,若不存在.請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義域在上的奇函數,且

1)用定義證明:函數上是增函數,

2)若實數滿足,求實數的范圍.

查看答案和解析>>

同步練習冊答案