【題目】已知函數(shù)(其中),且曲線在點(diǎn)處的切線垂直于直線.
(1)求的值及此時的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
【答案】(Ⅰ)a= ,; (Ⅱ)減區(qū)間為,增區(qū)間為;極小值為,無極大值..
【解析】
(Ⅰ)先求導(dǎo)函數(shù),根據(jù)切線與直線垂直可得切線的斜率為k=-2.由導(dǎo)函數(shù)的意義代入即可求得a的值;代入函數(shù)后可求得,進(jìn)而利用點(diǎn)斜式可求得切線方程。
(Ⅱ)將a代入導(dǎo)函數(shù)中,令,結(jié)合定義域求得x的值;列出表格,根據(jù)表格即可判斷單調(diào)區(qū)間和極值。
(Ⅰ)由于,所以,
由于 在點(diǎn) 處的切線垂直于直線,
則 ,解得.
此時,
切點(diǎn)為,所以切線方程為.
(Ⅱ)由(Ⅰ)知,則,
令,解得或(舍),
則的變化情況如下表,
5 | |||
0 | |||
遞減 | 極小值 | 遞增 |
所以函數(shù)的減區(qū)間為,增區(qū)間為.
函數(shù)的極小值為,無極大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)用定義證明函數(shù)在R上為單調(diào)遞增函數(shù).若當(dāng)時恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運(yùn)營公司為了解某地區(qū)用戶對該公司所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了100名用戶,得到用戶的滿意度評分(滿分10分),現(xiàn)將評分分為5組,如下表:
組別 | 一 | 二 | 三 | 四 | 五 |
滿意度評分 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
頻數(shù) | 5 | 10 | a | 32 | 16 |
頻率 | 0.05 | b | 0.37 | c | 0.16 |
(1)求表格中的a,b,c的值;
(2)估計(jì)用戶的滿意度評分的平均數(shù);
(3)若從這100名用戶中隨機(jī)抽取25人,估計(jì)滿意度評分低于6分的人數(shù)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)討論函數(shù)f(x)=ex的單調(diào)性,并證明當(dāng)x>0時,(x-2)ex+x+2>0.
(2)證明:當(dāng)a∈[0,1) 時,函數(shù)g(x)= (x>0) 有最小值.設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年11月、12月全國大范圍流感爆發(fā),為研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,一興趣小組抄錄了某醫(yī)院11月到12月間的連續(xù)6個星期的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 第一周 | 第二周 | 第三周 | 第四周 | 第五周 | 第六周 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個星期的概率;
(Ⅱ)若選取的是第一周與第六周的兩組數(shù)據(jù),請根據(jù)第二周到第五周的4組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: )
參考數(shù)據(jù): 1092, 498
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,且,.
(1)求,的通項(xiàng)公式;
(2)設(shè),,若,,成等差數(shù)列(、為正整數(shù)且),求和的值;
(3)設(shè)為數(shù)列的前項(xiàng)和,是否存在實(shí)數(shù),使得對一切均成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解華師一附中學(xué)生喜歡吃辣是否與性別有關(guān),調(diào)研部(共10人)分三組對高中三個年級的學(xué)生進(jìn)行調(diào)查,每個年級至少派3個人進(jìn)行調(diào)查.(1)求調(diào)研部的甲、乙兩人都被派到高一年級進(jìn)行調(diào)查的概率.(2)調(diào)研部對三個年級共100人進(jìn)行了調(diào)查,得到如下的列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并判斷是否有以上的把握認(rèn)為喜歡吃辣與性別有關(guān)?
喜歡吃辣 | 不喜歡吃辣 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | 30 | |
合計(jì) | 100 |
參考數(shù)據(jù):
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表所示:
(1)由頻率分布直方圖,估計(jì)這100人年齡的平均數(shù);
(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的22列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?
45歲以下 | 45歲以上 | 總計(jì) | |
不支持 | |||
支持 | |||
總計(jì) |
參考數(shù)據(jù):
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為(為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com