【題目】如圖,在三棱柱中,、分別為的中點(diǎn),,.

求證:平面;

求二面角的正弦值;

已知為棱上的點(diǎn),若,求線段的長度.

【答案】(1)證明見解析(2)(3)

【解析】

1)證明,,再根據(jù),從而得到線面垂直的證明;

2)以點(diǎn)為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸的正方向,利用向量法求得二面角的余弦值,再利用同角三角函數(shù)的基本關(guān)系求得正弦值;

3)結(jié)合(2)中,求得點(diǎn),再求的值,從而求得線段的長度.

1)在三角形中,的中點(diǎn),

所以.

中,,.

連接,在中,,

所以.

,所以,所以.

又因?yàn)?/span>,③

由①②③,得平面.

2)以點(diǎn)為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸的正方向,建立如圖所示的空間直角坐標(biāo)系,

所以.

設(shè)為平面的法向量,

則有

,得所以.

易得,且為平面的法向量,

所以,,

所以.

故所求二面角的正弦值為

3)由(2)知.

設(shè)點(diǎn),則.

,

所以,從而

即點(diǎn).

所以.

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)閱兵領(lǐng)導(dǎo)小組辦公室介紹,2019年國慶70周年閱兵有59個方()隊和聯(lián)合軍樂團(tuán),總規(guī)模約15萬人,是近幾次閱兵中規(guī)模最大的一次.其中,徒步方隊15個.為了保證閱兵式時隊列保持整齊,各個方隊對受閱隊員的身高也有著非常嚴(yán)格的限制,太高或太矮都不行.徒步方隊隊員,男性身高普遍在175cm185cm之間;女性身高普遍在163cm175cm之間,這是常規(guī)標(biāo)準(zhǔn).要求最為嚴(yán)格的三軍儀仗隊,其隊員的身高一般都在184cm190cm之間.經(jīng)過隨機(jī)調(diào)查某個閱兵陣營中女子100人,得到她們身高的直方圖,如圖,記C為事件:某一閱兵女子身高不低于169cm,根據(jù)直方圖得到P(C)的估計值為05

(1)求直方圖中ab的值;

(2)估計這個陣營女子身高的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖).已知上學(xué)所需時間的范圍是,樣本數(shù)據(jù)分組為,,

1)求直方圖中x的值;

2)如果上學(xué)所需時間在的學(xué)生可申請在學(xué)校住宿,請估計該校800名新生中有多少名學(xué)生可以申請住宿.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列命題中正確命題的個數(shù)是(

①函數(shù)上為周期函數(shù)

②函數(shù)在區(qū)間,上單調(diào)遞增

③函數(shù))取到最大值,且無最小值

④若方程)有且僅有兩個不同的實(shí)根,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若有兩個不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線是平面內(nèi)到直線和直線的距離之積等于常數(shù))的點(diǎn)的軌跡,下列四個結(jié)論:

①曲線過點(diǎn)

②曲線關(guān)于點(diǎn)成中心對稱;

③若點(diǎn)在曲線上,點(diǎn)分別在直線、上,則不小于;

④設(shè)為曲線上任意一點(diǎn),則點(diǎn)關(guān)于直線,點(diǎn)及直線對稱的點(diǎn)分別為、,則四邊形的面積為定值;

其中,所有正確結(jié)論的序號是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=xsinx的圖象是下列兩個圖象中的一個,如圖,請你選擇后再根據(jù)圖象作出下面的判斷:若x1,x2∈(),且fx1)<fx2),則(  

A.x1x2B.x1+x20C.x1x2D.x12x22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)DD在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長交AB于點(diǎn)G.

)證明:GAB的中點(diǎn);

)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足對任意的恒成立,為其前n項的和,且,.

1)求數(shù)列的通項;

2)數(shù)列滿足,其中.

①證明:數(shù)列為等比數(shù)列;

②求集合

查看答案和解析>>

同步練習(xí)冊答案