已知,,
(1)若對(duì)內(nèi)的一切實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求最大的正整數(shù),使得對(duì)是自然對(duì)數(shù)的底數(shù))內(nèi)的任意個(gè)實(shí)數(shù)都有成立;
(3)求證:

(1). (2)的最大值為
(3)證明(法一):先得到時(shí),,即
,得,   
化簡(jiǎn)得

(法二)數(shù)學(xué)歸納法:

解析試題分析:(1)由,
要使不等式恒成立,必須恒成立.   
設(shè),,
當(dāng)時(shí),,則是增函數(shù),
,是增函數(shù),,
因此,實(shí)數(shù)的取值范圍是.                     5分
(2)當(dāng)時(shí),
上是增函數(shù),上的最大值為
要對(duì)內(nèi)的任意個(gè)實(shí)數(shù)都有
成立,必須使得不等式左邊的最大值小于或等于右邊的最小值,
當(dāng)時(shí)不等式左邊取得最大值,時(shí)不等式右邊取得最小值.
,解得
因此,的最大值為.                              9分
(3)證明(法一):當(dāng)時(shí),根據(jù)(1)的推導(dǎo)有,時(shí),,
.                            10分
,得,   
化簡(jiǎn)得,                  13分
.          14分
(法二)數(shù)學(xué)歸納法:當(dāng)時(shí),左邊=,右邊=
根據(jù)(1)的推導(dǎo)有,時(shí),,即
,得,即. 因此,時(shí)不等式成立.        10分
(另解:,,,即.)
假設(shè)當(dāng)時(shí)不等式成立,即,
則當(dāng)時(shí),
,
要證時(shí)命題成立,即證

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)。
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)求切于點(diǎn)的切線方程;
(3)求函數(shù)上的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)若函數(shù)處的切線方程為,求實(shí)數(shù),的值;
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(I)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(II)在區(qū)間內(nèi)至少存在一個(gè)實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為實(shí)數(shù),
(1)求導(dǎo)數(shù);
(2)若,求在[-2,2] 上的最大值和最小值;
(3)若上都是遞增的,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù), 其中,的導(dǎo)函數(shù).
(Ⅰ)若,求函數(shù)的解析式;
(Ⅱ)若,函數(shù)的兩個(gè)極值點(diǎn)為滿足. 設(shè), 試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) 
(1)若上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若的極值點(diǎn),求上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)(為自然對(duì)數(shù)的底數(shù)),).
(1)證明:;
(2)當(dāng)時(shí),比較的大小,并說(shuō)明理由;
(3)證明:).

查看答案和解析>>

同步練習(xí)冊(cè)答案