已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.

(1)









遞減
遞增
遞減
遞增
遞增
其中    
(2).

解析試題分析:(1)函數(shù)的定義域為.設(shè) ,                  
①當(dāng)時,,上恒成立,則上恒成立,此時上單調(diào)遞減. 
②當(dāng)時,(I)由.
當(dāng)時,恒成立,
上單調(diào)遞增. 當(dāng)時,恒成立,上單調(diào)遞減.
(II)由;.當(dāng)時,開口向下,上恒成立,則上恒成立,此時上單調(diào)遞減.
當(dāng) ,開口向上,上恒成立,則上恒成立,
此時 在上單調(diào)遞增.
(III)由
,開口向上,,且,都在上. 由,即,得;
,即,得
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為.  
當(dāng)時,拋物線開口向下,
恒成立,即在(0,+恒成立,所以單調(diào)遞減
綜上所述:

<big id="hsxjz"></big>



練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是二次函數(shù),不等式的解集是,且在點處的切線與直線平行.求的解析式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

理科(本小題14分)已知函數(shù),當(dāng)時,函數(shù)取得極大值.
(Ⅰ)求實數(shù)的值;(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導(dǎo)數(shù)都存在,且,則存在,使得.試用這個結(jié)論證明:若,函數(shù),則對任意,都有;(Ⅲ)已知正數(shù)滿足求證:當(dāng),時,對任意大于,且互不相等的實數(shù),都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分) 設(shè)函數(shù).
(Ⅰ)判斷能否為函數(shù)的極值點,并說明理由;
(Ⅱ)若存在,使得定義在上的函數(shù)處取得最大值,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且處取得極值.
(1)求函數(shù)的解析式.
(2)設(shè)函數(shù),是否存在實數(shù),使得曲線軸有兩個交點,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,
(1)若對內(nèi)的一切實數(shù),不等式恒成立,求實數(shù)的取值范圍;
(2)當(dāng)時,求最大的正整數(shù),使得對是自然對數(shù)的底數(shù))內(nèi)的任意個實數(shù)都有成立;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的最小值為0,其中。
(1)求a的值
(2)若對任意的,有成立,求實數(shù)k的最小值
(3)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計算由曲線,直線以及兩坐標軸所圍成的圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)求曲線處的切線方程。
(II)設(shè)如果過點可作曲線的三條切線,證明:

查看答案和解析>>

同步練習(xí)冊答案