【題目】如圖,在四棱錐S﹣ABCD中,側(cè)面SCD為鈍角三角形且垂直于底面ABCD,CD=SD,點M是SA的中點,AD//BC,∠ABC=90°,AB=ADBC=a.
(1)求證:平面MBD⊥平面SCD;
(2)若∠SDC=120°,求三棱錐C﹣MBD的體積.
【答案】(1)證明見解析;(2)a3.
【解析】
(1)取BC中點E,連接DE,則AB=AD=a,BC=2a.由題意可得:四邊形ABED為正方形,可得BD2+CD2=BC2,于是BD⊥CD,根據(jù)面面垂直的性質(zhì)定理可得:BD⊥平面SCD,進而得出平面MBD⊥平面SCD.
(2)過點S作SH⊥CD,交CD的延長線于點H,連接AH.∠SDH為SD與底面ABCD所成的角,即∠SDH=60°.點M到平面ABCD的距離d=SH.可得三棱錐C﹣MBD的體積VBD×CDd.
(1)證明:取BC中點E,連接DE,則AB=AD=a,BC=2a.由題意可得:四邊形ABED為正方形,且BE=DE=CE=a,BD=CDa.
∴BD2+CD2=BC2,則BD⊥CD,又平面SCD⊥平面ABCD,平面SCD∩平面ABCD=CD,
∴BD⊥平面SCD,BD平面MBD,∴平面MBD⊥平面SCD.
(2)解:過點S作SH⊥CD,交CD的延長線于點H,連接AH.
則∠SDH為SD與底面ABCD所成的角,即∠SDH=60°.
由(1)可得:SD=CDa,∴在Rt△SHD中,SDa,HDa,SHa.
∴點M到平面ABCD的距離da.
∴三棱錐C﹣MBD的體積VBD×CDda3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F為橢圓(a>b>0)的一個焦點,點A為橢圓的右頂點,點B為橢圓的下頂點,橢圓上任意一點到點F距離的最大值為3,最小值為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若M、N在橢圓上但不在坐標(biāo)軸上,且直線AM∥直線BN,直線AN、BM的斜率分別為k1和k2,求證:k1k2=e2﹣1(e為橢圓的離心率).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log3(ax+b)的圖象經(jīng)過點A(2,1)和B(5,2),an=an+b(n∈N*).
(1)求{an};
(2)設(shè)數(shù)列{an}的前n項和為Sn,bn,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市在進行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)建文明城”的滿意程度,組織居民給活動打分(分?jǐn)?shù)為整數(shù),滿分100分),從中隨機抽取一個容量為120的樣本,發(fā)現(xiàn)所給數(shù)據(jù)均在[40,100]內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形則下列說法中有錯誤的是( )
A.第三組的頻數(shù)為18人
B.根據(jù)頻率分布直方圖估計眾數(shù)為75分
C.根據(jù)頻率分布直方圖估計樣本的平均數(shù)為75分
D.根據(jù)頻率分布直方圖估計樣本的中位數(shù)為75分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,,過點作平面的垂線,垂足為與的交點,是線段的中點.
(1)求證:DE//平面;
(2)若四棱錐的體積為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市化、工業(yè)化進程加速,汽車工業(yè)快速發(fā)展,國際原油供求矛盾逐步加深,全球氣候變暖日益明顯.在此背景下,以節(jié)能減排為重要目標(biāo)的新能源汽車技術(shù)不斷取得突破,并呈現(xiàn)快速突破、競相發(fā)展的態(tài)勢.在2015年10月份,國家發(fā)改委等部委在《電動汽車充電基礎(chǔ)設(shè)施發(fā)展指南(2015-2020年)》中要求,新建住宅配建停車位應(yīng)100%建設(shè)充電基礎(chǔ)設(shè)施或預(yù)留建設(shè)安裝條件,大型公共建筑物配建停車場、社會公共停車場建設(shè)充電基礎(chǔ)設(shè)施或預(yù)留建設(shè)安裝條件的車位比例不低于10%,每2000輛電動汽車應(yīng)至少配套建設(shè)一座公共充電站.
為鼓勵新能源汽車發(fā)展,國家和地方出臺了相關(guān)補貼政策.
附表1:2018年某市新能源汽車補貼政策:
純電續(xù)航里程() | 國家補貼(萬元/輛) | 地方補貼(萬元/輛) |
1.50 | 0.75 | |
2.4 | 1.2 | |
3.4 | 1.7 | |
4.5 | 2.25 | |
5 | 2.5 |
為了獲得更大的市場分額,搶占未來新能源汽車銷售先機.該市對2018年各類型新能源汽車銷售占比情況進行了調(diào)查.
附表2:2018年該市各類型新能源汽車銷售占比情況:
純電續(xù)航里程 | |||||
占比 | 5% | 20% | 35% | 25% | 15% |
(1)用2018年新能源汽車銷售占比來估計2019年的新能源汽車銷售情況,求2019年每輛新能源汽車的平均補貼.若該市2019年想實現(xiàn)3000萬元補貼,估計需要銷售新能源汽車多少量.(補貼政策按每輛車補貼=國家補貼+地方補貼,結(jié)果四舍五入保留整數(shù))
(2)該市新能源汽車促進辦公寶為了調(diào)查新能源汽車補貼發(fā)放情況,希望從2018年銷售的新能漂源汽車中抽取10輛車的信息進行回訪核實.以各類型新能源汽車銷售占比為概率.求抽到幾輛續(xù)航里程小于新能源汽車的可能性最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知有窮數(shù)列A:(且).定義數(shù)列A的“伴生數(shù)列”B:,其中(),規(guī)定,.
(1)寫出下列數(shù)列的“伴生數(shù)列”:
①1,2,3,4,5;
②1,,1,,1.
(2)已知數(shù)列B的“伴生數(shù)列”C:,,…,,…,,且滿足(,2,…,n).
(i)若數(shù)列B中存在相鄰兩項為1,求證:數(shù)列B中的每一項均為1;
(ⅱ)求數(shù)列C所有項的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用2與0兩個數(shù)字排成7位的數(shù)碼,其中“20”和“02”各至少出現(xiàn)兩次(如0020020、2020200、0220220等),則這樣的數(shù)碼的個數(shù)是( )
A.54B.44C.32D.22
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com