【題目】隨著城市化、工業(yè)化進程加速,汽車工業(yè)快速發(fā)展,國際原油供求矛盾逐步加深,全球氣候變暖日益明顯.在此背景下,以節(jié)能減排為重要目標的新能源汽車技術不斷取得突破,并呈現(xiàn)快速突破、競相發(fā)展的態(tài)勢.在2015年10月份,國家發(fā)改委等部委在《電動汽車充電基礎設施發(fā)展指南(2015-2020年)》中要求,新建住宅配建停車位應100%建設充電基礎設施或預留建設安裝條件,大型公共建筑物配建停車場、社會公共停車場建設充電基礎設施或預留建設安裝條件的車位比例不低于10%,每2000輛電動汽車應至少配套建設一座公共充電站.
為鼓勵新能源汽車發(fā)展,國家和地方出臺了相關補貼政策.
附表1:2018年某市新能源汽車補貼政策:
純電續(xù)航里程() | 國家補貼(萬元/輛) | 地方補貼(萬元/輛) |
1.50 | 0.75 | |
2.4 | 1.2 | |
3.4 | 1.7 | |
4.5 | 2.25 | |
5 | 2.5 |
為了獲得更大的市場分額,搶占未來新能源汽車銷售先機.該市對2018年各類型新能源汽車銷售占比情況進行了調查.
附表2:2018年該市各類型新能源汽車銷售占比情況:
純電續(xù)航里程 | |||||
占比 | 5% | 20% | 35% | 25% | 15% |
(1)用2018年新能源汽車銷售占比來估計2019年的新能源汽車銷售情況,求2019年每輛新能源汽車的平均補貼.若該市2019年想實現(xiàn)3000萬元補貼,估計需要銷售新能源汽車多少量.(補貼政策按每輛車補貼=國家補貼+地方補貼,結果四舍五入保留整數(shù))
(2)該市新能源汽車促進辦公寶為了調查新能源汽車補貼發(fā)放情況,希望從2018年銷售的新能漂源汽車中抽取10輛車的信息進行回訪核實.以各類型新能源汽車銷售占比為概率.求抽到幾輛續(xù)航里程小于新能源汽車的可能性最大.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知多面體PABCDE的底面ABCD是邊長為2的菱形,底面ABCD,,且.
(1)證明:平面平面;
(2)若,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市在進行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)建文明城”的滿意程度,組織居民給活動打分(分數(shù)為整數(shù),滿分100分),從中隨機抽取一個容量為120的樣本,發(fā)現(xiàn)所給數(shù)據(jù)均在[40,100]內.現(xiàn)將這些分數(shù)分成以下6組并畫出樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形則下列說法中有錯誤的是( )
A.第三組的頻數(shù)為18人
B.根據(jù)頻率分布直方圖估計眾數(shù)為75分
C.根據(jù)頻率分布直方圖估計樣本的平均數(shù)為75分
D.根據(jù)頻率分布直方圖估計樣本的中位數(shù)為75分
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,側面SCD為鈍角三角形且垂直于底面ABCD,CD=SD,點M是SA的中點,AD//BC,∠ABC=90°,AB=ADBC=a.
(1)求證:平面MBD⊥平面SCD;
(2)若∠SDC=120°,求三棱錐C﹣MBD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線:,半徑為2的圓與相切,圓心在軸上且在直線的右上方.
(1)求圓的方程;
(2)過點的直線與圓交于,兩點(在軸上方),問在軸正半軸上是否存在定點,使得軸平分?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),若以O為極點,x軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線C的極坐標方程為.
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)將所得曲線C向右平移1個單位長度,再將曲線C上的所有點的橫坐標變?yōu)樵瓉淼?/span>2倍,得到曲線,求曲線上的點到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果對某對象連續(xù)實施兩次變換后的結果就是變換前的對象,那么我們稱這種變換為“回歸”變換.如:對任意一個實數(shù),變換:取其相反數(shù).因為相反數(shù)的相反數(shù)是它本身,所以變換“取實數(shù)的相反數(shù)”是一種“回歸”變換.有下列3種變換:
①對,變換:求集合A的補集;
②對任意,變換:求z的共軛復數(shù);
③對任意,變換:(k,b均為非零實數(shù)).
其中是“回歸”變換的是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為提高生產效率,開展技術創(chuàng)新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產方式,第二組工人用第二種生產方式.根據(jù)工人完成生產任務的工作時間(單位:min)繪制了莖葉圖:則下列結論中表述不正確的是
A. 第一種生產方式的工人中,有75%的工人完成生產任務所需要的時間至少80分鐘
B. 第二種生產方式比第一種生產方式的效率更高
C. 這40名工人完成任務所需時間的中位數(shù)為80
D. 無論哪種生產方式的工人完成生產任務平均所需要的時間都是80分鐘.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)學中有許多寓意美好的曲線,曲線被稱為“四葉玫瑰線”(如圖所示).
給出下列三個結論:
①曲線關于直線對稱;
②曲線上任意一點到原點的距離都不超過;
③存在一個以原點為中心、邊長為的正方形,使得曲線在此正方形區(qū)域內(含邊界).
其中,正確結論的序號是________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com