(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
已知數(shù)列滿足
(1)設(shè),證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;
(2)求數(shù)列的前項和

(1), 
為等差數(shù)列.又
(2)

解析試題分析:(1),……2分  
為等差數(shù)列.又
(2)設(shè),則
3



考點:本題考查了等差數(shù)列的通項及數(shù)列的前N項和
點評:高考關(guān)于數(shù)列方面的命題主要有以下三個方面:(1)數(shù)列本身的有關(guān)知識,其中有等差數(shù)列、等比數(shù)列的概念、性質(zhì)、通項公式及求和公式;(2)數(shù)列與其他知識結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合以及探索性問題;(3)數(shù)列的應(yīng)用問題,其中主要是以增長率為主.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和為,若對于任意的正整數(shù)都有,
(1)設(shè),求證:數(shù)列是等比數(shù)列,并求出的通項公式;
(2)求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和,數(shù)列滿足
(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和;
(3)求證:不論取何正整數(shù),不等式恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前n項和(n為正整數(shù))。
(Ⅰ)令,求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)令,試比較的大小,并予以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
在數(shù)列{an}中,a1=1,an=n2[1+++…+] (n≥2,n∈N)
(1)當(dāng)n≥2時,求證:=
(2)求證:(1+)(1+)…(1+)<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)
已知有窮數(shù)列共有項(整數(shù)),首項,設(shè)該數(shù)列的前項和為,且其中常數(shù)⑴求的通項公式;⑵若,數(shù)列滿足
求證:
⑶若⑵中數(shù)列滿足不等式:,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)已知數(shù)列是各項均不為的等差數(shù)列,公差為,為其前項和,且滿足.?dāng)?shù)列滿足,為數(shù)列的前n項和.
(Ⅰ)求數(shù)列的通項公式和數(shù)列的前n項和;
(Ⅱ)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)設(shè)數(shù)列為單調(diào)遞增的等差數(shù)列依次成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若求數(shù)列的前項和;
(Ⅲ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,試證明:
(1)當(dāng)時,有;
(2).

查看答案和解析>>

同步練習(xí)冊答案