【題目】在平面直角坐標(biāo)系中,以原點為極點,軸非負(fù)半軸為極軸極坐標(biāo),曲線
的方程:
(
為參數(shù)),曲線
的方程:
.
(1)求曲線和曲線
的直角坐標(biāo)系方程;
(2)從上任意一點
作曲線
的切線,設(shè)切點為
,求切線長
的最小值及此時點
的極坐標(biāo).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為4,直線
被橢圓
截得的線段長為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右頂點作互相垂直的兩條直線
分別交橢圓
于
兩點(點
不同于橢圓
的右頂點),證明:直線
過定點
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點
,直線
與y軸交于點P.且與橢圓交于A,B兩點.A為橢圓的右頂點,B在x軸上的射影恰為
。
(1)求橢圓E的方程;
(2)M為橢圓E在第一象限部分上一點,直線MP與橢圓交于另一點N,若,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面內(nèi)兩條直線和
相交于點
,構(gòu)成的四個角中的銳角為
.對于平面上任意一點
,若
,
分別是
到直線
和
的距離,則稱有序非負(fù)實數(shù)對
是點
的“距離坐標(biāo)”,給出下列四個命題:
①點有且僅有兩個;
②點有且僅有4個;
③若,則點
的軌跡是兩條過
點的直線;
④滿足的所有點
位于一個圓周上.
其中正確命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為
.
(Ⅰ)求函數(shù)的解析式和當(dāng)
時
的單調(diào)減區(qū)間;
(Ⅱ)的圖象向右平行移動
個長度單位,再向下平移1個長度單位,得到
的圖象,用“五點法”作出
在
內(nèi)的大致圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在
上的零點個數(shù);
(2)當(dāng)時,若存在
,使
,求實數(shù)
的取值范圍.(
為自然對數(shù)的底數(shù),其值為2.71828……)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)統(tǒng)計,用于數(shù)學(xué)學(xué)習(xí)的時間(單位:小時)與成績(單位:分)近似于線性相關(guān)關(guān)系.對某小組學(xué)生每周用于數(shù)學(xué)的學(xué)習(xí)時間與數(shù)學(xué)成績
進(jìn)行數(shù)據(jù)收集如下:
由樣本中樣本數(shù)據(jù)求得回歸直線方程為,則點
與直線
的位置關(guān)系是( )
A. B.
C. D.
與
的大小無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=2an﹣1.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=anlog2an+1,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com