【題目】假設(shè)你有一筆資金,現(xiàn)有三種投資方案,這三種方案的回報(bào)如下:

方案一:每天回報(bào)40元;

方案二:第一天回報(bào)10元,以后每天比前一天多回報(bào)10元;

方案三:第一天回報(bào)0.4元,以后每天的回報(bào)比前一天翻一番.

現(xiàn)打算投資10天,三種投資方案的總收益分別為,,,則( )

A.B.

C.D.

【答案】B

【解析】

設(shè)三種方案第n天的回報(bào)分別為,,,則為常數(shù)列;是首項(xiàng)為10,公差為10的等差數(shù)列;是首項(xiàng)為0.4,公比為2的等比數(shù)列.由數(shù)列的求和公式可得選項(xiàng).

設(shè)三種方案第n天的回報(bào)分別為,,,則,為常數(shù)列;

是首項(xiàng)為10,公差為10的等差數(shù)列;是首項(xiàng)為0.4,公比為2的等比數(shù)列.

設(shè)投資10天三種投資方案的總收益為,,,

;

,

所以.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在貫徹中共中央國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位定點(diǎn)幫扶甲、乙兩個(gè)村各50戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對(duì)這100戶村民的年收入情況、勞動(dòng)能力情況、子女受教育情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo),制成下圖其中”表示甲村貧困戶,“”表示乙村貧困戶.

,則認(rèn)定該戶為“絕對(duì)貧困戶”,若,則認(rèn)定該戶為“相對(duì)貧困戶”,若,則認(rèn)定該戶為“低收入戶”;

,則認(rèn)定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從甲村50戶中隨機(jī)選出一戶,求該戶為“今年不能脫貧的絕對(duì)貧困戶的概率;

2)若從所有“今年不能脫貧的非絕對(duì)貧困戶”中選3戶,用表示所選3戶中乙村的戶數(shù),求的分布列和數(shù)學(xué)期望;

3)試比較這100戶中,甲、乙兩村指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)國(guó)家環(huán)保部新修訂的《 環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)的年平均濃度不得超過(guò)微克/立方米,小時(shí)平均濃度不得超過(guò)微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下表:

組別

濃度(微克/立方米)

頻數(shù)(天)

頻率

第一組

第二組

第三組

第四組

1)這天的測(cè)量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖.

①求圖中的值;

②求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由;

2)將頻率視為概率,對(duì)于年的某天,記這天中該居民區(qū)小時(shí)平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家的晚報(bào)在下午任何一個(gè)時(shí)間隨機(jī)地被送到,他們一家人在下午任何一個(gè)時(shí)間隨機(jī)地開始晚餐.為了計(jì)算晚報(bào)在晚餐開始之前被送到的概率,某小組借助隨機(jī)數(shù)表的模擬方法來(lái)計(jì)算概率,他們的具體做法是將每個(gè)1分鐘的時(shí)間段看作個(gè)體進(jìn)行編號(hào),編號(hào)為01,編號(hào)為02,依此類推,編號(hào)為90.在隨機(jī)數(shù)表中每次選取一個(gè)四位數(shù),前兩位表示晚報(bào)時(shí)間,后兩位表示晚餐時(shí)間,如果讀取的四位數(shù)表示的晚報(bào)晚餐時(shí)間有一個(gè)不符合實(shí)際意義,視為這次讀取的無(wú)效數(shù)據(jù)(例如下表中的第一個(gè)四位數(shù)7840中的78不符合晚報(bào)時(shí)間).按照從左向右,讀完第一行,再?gòu)淖笙蛴易x第二行的順序,讀完下表,用頻率估計(jì)晚報(bào)在晚餐開始之前被送到的概率為  

7840 1160 5054 3139 8082 7732 5034 3682 4829 4052

4201 6277 5678 5188 6854 0200 8650 7584 0136 7655

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某房地產(chǎn)商建有三棟樓宇,三樓宇間的距離都為2千米,擬準(zhǔn)備在此三樓宇圍成的區(qū)域外建第四棟樓宇,規(guī)劃要求樓宇對(duì)樓宇,的視角為,如圖所示,假設(shè)樓宇大小高度忽略不計(jì).

(1)求四棟樓宇圍成的四邊形區(qū)域面積的最大值;

(2)當(dāng)樓宇與樓宇,間距離相等時(shí),擬在樓宇間建休息亭,在休息亭和樓宇,間分別鋪設(shè)鵝卵石路和防腐木路,如圖,已知鋪設(shè)鵝卵石路、防腐木路的單價(jià)分別為(單位:元千米,為常數(shù)).記,求鋪設(shè)此鵝卵石路和防腐木路的總費(fèi)用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,(為參數(shù)).

1)求曲線的直角坐標(biāo)方程及的普通方程;

2)已知點(diǎn)PQ為曲線與曲線的交點(diǎn),W為參數(shù)方程(為參數(shù))曲線上一點(diǎn),求點(diǎn)W到直線的距離d的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,,.

1)求證:平面平面;

2)若點(diǎn)是線段上靠近的三等分點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠DAB60°ADPD,點(diǎn)F為棱PD的中點(diǎn).

1)在棱BC上是否存在一點(diǎn)E,使得CF∥平面PAE,并說(shuō)明理由;

2)若ACPB,二面角DFCB的余弦值為時(shí),求直線AF與平面BCF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】政府工作報(bào)告指出,2019年我國(guó)深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,創(chuàng)新能力和效率進(jìn)一步提升;2020年要提升科技支撐能力,健全以企業(yè)為主體的產(chǎn)學(xué)研一體化創(chuàng)新機(jī)制,某企業(yè)為了提升行業(yè)核心競(jìng)爭(zhēng)力,逐漸加大了科技投入;該企業(yè)連續(xù)5年來(lái)的科技投入x(百萬(wàn)元)與收益y(百萬(wàn)元)的數(shù)據(jù)統(tǒng)計(jì)如下:

科技投入x

1

2

3

4

5

收益y

40

50

60

70

90

1)請(qǐng)根據(jù)表中數(shù)據(jù),建立y關(guān)于x的線性回歸方程;

2)按照(1)中模型,已知科技投入8百萬(wàn)元時(shí)收益為140百萬(wàn)元,求殘差(殘差真實(shí)值-預(yù)報(bào)值).

參考數(shù)據(jù):回歸直線方程,其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案