精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線C的頂點為原點,焦點F與圓的圓心重合.

(1)求拋物線C的標準方程;

(2)設定點,當P點在C上何處時,的值最小,并求最小值及點P的坐標;

(3)若弦過焦點,求證:為定值.

【答案】(1)(2)4(3)1,

【解析】分析:(1)化圓的一般方程為標準方程,求出圓心坐標,可得拋物線的焦點坐標,從而可得拋物線方程;(2)設點在拋物線的準線上的射影為點,根據拋物線定義知,要使的值最小,必三點共線,從而可得結果;(3),設 ,根據焦半徑公式可得 利用韋達定理化簡可得結果.

詳解:(1)由已知易得,

則求拋物線的標準方程C為.

(2)設點P在拋物線C的準線上的攝影為點B,

根據拋物線定義知

要使的值最小,必三點共線.

可得,.

此時.

(3),設

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓 的左焦點左頂點.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知是橢圓上的兩點,是橢圓上位于直線兩側的動點.若,試問直線的斜率是否為定值?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數有唯一零點,則a=

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC, ABBC, BDDC,點EBC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE, AC, DE,得到如圖所示的空間幾何體.

  

(1)求證:AB⊥平面ADC;

(2)若AD=1,AB,求點B到平面ADE的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|x+2|+|x﹣a|,x∈R
(1)若a<0,且log2f(x)>2對任意x∈R恒成立,求實數a的取值范圍;
(2)若a>0,且關于x的不等式f(x)< x有解,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某學校組織的一次籃球總投籃訓練中,規(guī)定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分,如果前兩次得分之和超過3分即停止投籃,否則投第3次.某同學在A處的命中率q1為0.25,在B處的命中率為q2 . 該同學選擇先在A處投一球,以后都在B處投,用ξ表示該同學投籃的訓練結束后所得的總分,其分布列為

ξ

0

2

3

4

5

P

0.03

P1

P2

P3

P4


(1)求q2的值;
(2)求隨機變量ξ的數學期望Eξ;
(3)試比較該同學選擇在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓的離心率為,焦點到相應準線的距離為,分別為橢圓的左頂點和下頂點,為橢圓上位于第一象限內的一點,軸于點,軸于點.

(1)求橢圓的標準方程;

(2)若,求的值;

(3)求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,PA=
(Ⅰ)求證:BD⊥PC;
(Ⅱ)若E是PA的中點,求三棱錐P﹣BCE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】A市某機構為了調查該市市民對我國申辦2034年足球世界杯的態(tài)度,隨機選取了140位市民進行調查,調查結果統(tǒng)計如下:

支持

不支持

總計

男性市民

60

女性市民

50

合計

70

140

(I)根據已知數據,把表格數據填寫完整;

(II)利用(1)完成的表格數據回答下列問題:

(ⅰ)能否在犯錯誤的概率不超過0.001的前提下認為性別與支持申辦足球世界杯有關;

(ⅱ)已知在被調查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,現從這5位退休老人中隨機抽取3人,求至多有1位老師的概率。

附:,其中

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案