已知函數(shù)
(Ⅰ)若上的最大值為,求實(shí)數(shù)的值;
(Ⅱ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說明理由.

(Ⅰ).(Ⅱ)
(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線 上總存在兩點(diǎn),,使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上.

解析試題分析:(Ⅰ)由,得,
,得
當(dāng)變化時(shí),的變化如下表:









 
-

+

-



極小值

極大值

,,,
即最大值為,.                          4分
(Ⅱ)由,得
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為,對(duì)于任意的,函數(shù) 的導(dǎo)函數(shù))在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;  
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的圖象經(jīng)過點(diǎn),且在處的切線方程是
(1)求的解析式;(2)求的單調(diào)遞增區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中的導(dǎo)函數(shù).證明:對(duì)任意.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間.
(3)設(shè),如果過點(diǎn)可作曲線的三條切線,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知時(shí)有極大值6,在時(shí)有極小值,求a,b,c的值;并求區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=x3-12x+5,x∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=a有三個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(Ⅰ)當(dāng)=1時(shí),求在(1,)的切線方程
(Ⅱ)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 在區(qū)間[-2,2]的最大值為20,求它在該區(qū)間的最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案