已知橢圓過(guò)點(diǎn),且它的離心率.直線
與橢圓交于兩點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時(shí),求證:、兩點(diǎn)的橫坐標(biāo)的平方和為定值;
(Ⅲ)若直線與圓相切,橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.
(Ⅰ)
(Ⅱ),為定值.
(Ⅲ)的取值范圍為

試題分析:(Ⅰ) 設(shè)橢圓的標(biāo)準(zhǔn)方程為
由已知得:,解得   
所以橢圓的標(biāo)準(zhǔn)方程為:   4分
(Ⅱ) 由,得,設(shè),,
,為定值. 9分
(Ⅲ)因?yàn)橹本與圓相切
所以,     
代入并整理得:
設(shè),則有 

因?yàn)椋?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902441958.png" style="vertical-align:middle;" />, 所以,
又因?yàn)辄c(diǎn)在橢圓上, 所以,
.   因?yàn)?   所以 ,
所以 ,所以 的取值范圍為 .     16分
點(diǎn)評(píng):中檔題,涉及橢圓的題目,在近些年高考題中是屢見(jiàn)不鮮,往往涉及求標(biāo)準(zhǔn)方程,研究直線與橢圓的位置關(guān)系。求標(biāo)準(zhǔn)方程,主要考慮定義及a,b,c,e的關(guān)系,涉及直線于橢圓位置關(guān)系問(wèn)題,往往應(yīng)用韋達(dá)定理。涉及直線于圓的位置關(guān)系問(wèn)題,往往利用“特征三角形”。本題在應(yīng)用韋達(dá)定理的基礎(chǔ)上,得到參數(shù)的表達(dá)式,應(yīng)用二次函數(shù)性質(zhì)使問(wèn)題得解。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓上的點(diǎn)到直線的距離的最小值為        。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)P(2,0)且斜率為k的直線L交拋物線y=2x于M(x,y),N(x,y)兩點(diǎn). ⑴寫(xiě)出直線L的方程;⑵求xx與yy的值;⑶求證:OM⊥ON

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,有一條長(zhǎng)度為1的線段EF,其端點(diǎn)E、F分別在邊長(zhǎng)為3的正方形ABCD的四邊上滑動(dòng),當(dāng)F沿正方形的四邊滑動(dòng)一周時(shí),EF的中點(diǎn)M所形成的軌跡長(zhǎng)度最接近于(  )
A.8B.11
C.12D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線與雙曲線的右支交于不同的兩點(diǎn),那么的取值范圍是(  )
A.(B.(
C.(D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直接坐標(biāo)系xOy中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為.
(1)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,),判斷點(diǎn)P與直線L的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以拋物線的焦點(diǎn)為圓心,且過(guò)坐標(biāo)原點(diǎn)的圓的方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在平面直角坐標(biāo)系中,雙曲線中心在原點(diǎn),焦點(diǎn)在軸上,一條漸近線方程為,
則它的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)O和點(diǎn)F(﹣2, 0)分別是雙曲線的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則的取值范圍為
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案